利润问题-一元二次方程含答案(共5页).doc
《利润问题-一元二次方程含答案(共5页).doc》由会员分享,可在线阅读,更多相关《利润问题-一元二次方程含答案(共5页).doc(5页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上练习2:利润问题(一元二次方程应用)1、某商场购进一种单价为元的篮球,如果以单价元售出,那么每月可售出个根据销售经验,售价每提高元销售量相应减少个(1)假设销售单价提高元,那么销售每个篮球所获得的利润是_元;这种篮球每月的销售量是_个(用含的代数式表示)(4分)(2)元是否为每月销售这种篮球的最大利润?如果是,请说明理由;如果不是,请求出最大利润,此时篮球的售价应定为多少元?(8分)答案:(1),; (2)设月销售利润为元,由题意, 整理,得 当时,的最大值为, 答:元不是最大利润,最大利润为元,此时篮球的售价为元2.某食品零售店为仪器厂代销一种面包,未售出的面包可退
2、回厂家,以统计销售情况发现,当这种面包的单价定为7角时,每天卖出160个在此基础上,这种面包的单价每提高1角时,该零售店每天就会少卖出20个考虑了所有因素后该零售店每个面包的成本是5角设这种面包的单价为x(角),零售店每天销售这种面包所获得的利润为y(角)用含x的代数式分别表示出每个面包的利润与卖出的面包个数;求y与x之间的函数关系式;当面包单价定为多少时,该零售店每天销售这种面包获得的利润最大?最大利润为多少?(1)每个面包的利润为()角,卖出的面包个数为160-20()=300-20x(2)y=()(300-20x)其中5x15(3)y=-20x2+400x-1500,当x400?2(?2
3、0)10时,y最大,此时最大利润y=500(角)3、某商场以每件42元的价钱购进一种服装,根据试销得知:这种服装每天的销售量(件),与每件的销售价 (元/件)可看成是一次函数关系: 1.写出商场卖这种服装每天的销售利润 与每件的销售价 之间的函数关系式(每天的销售利润是指所卖出服装的销售价与购进价的差); 2.通过对所得函数关系式进行配方,指出:商场要想每天获得最大的销售利润,每件的销售价定为多少最为合适;最大销售利润为多少? 分析:商场的利润是由每件商品的利润乘每天的销售的数量所决定。 在这个问题中,每件服装的利润为( ),而销售的件数是( +204),那么就能得到一个 与之间的函数关系,这
4、个函数是二次函数. 要求销售的最大利润,就是要求这个二次函数的最大值. 解:(1)由题意,销售利润 与每件的销售价之间的函数关系为 =( 42)(3204),即 =3 2+ 8568 (2)配方,得 =3(55)2+507 当每件的销售价为55元时,可取得最大利润,每天最大销售利润为507元.4、(2010贵阳)某商场以每件50元的价格购进一种商品,销售中发现这种商品每天的销售量m(件)与每件的销售价x(元)满足一次函数,其图象如图所示.(1)每天的销售数量m(件)与每件的销售价格x(元)的函数表达式是 (3分)(2)求该商场每天销售这种商品的销售利润y(元)与每件的销售价格x(元)之间的函数
5、表达式;(4分)(3)每件商品的销售价格在什么范围内,每天的销售利润随着销售价格的提高而增加?(3分)(1)设出一次函数的一般表达式m=kx+b,将(0,100)(100,0)代入得:100b0100k+b,解得:k=-1,b=100,即m=-x+100(0x100),故答案为:m=-x+100(0x100);(2)解:每件商品的利润为,所以每天的利润为:y=()(-x+100)为y=-x2+15000=-(x-75)2+625;(3)x=-b2a=-1502(?1)=75,在50x75元时,每天的销售利润随着x的增大而增大5、某商场购进一批单价为16元的日用品,经试验发现,若按每件20元的价
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 利润 问题 一元 二次方程 答案
限制150内