全等三角形之手拉手模型、倍长中线-截长补短法(共8页).docx
《全等三角形之手拉手模型、倍长中线-截长补短法(共8页).docx》由会员分享,可在线阅读,更多相关《全等三角形之手拉手模型、倍长中线-截长补短法(共8页).docx(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上手拉手模型要点一:手拉手模型特点:由两个等顶角的等腰三角形所组成,并且顶角的顶点为公共顶点 结论:(1)ABD AEC (2)+BOC=180 (3)OA平分BOC变形: 例1.如图在直线的同一侧作两个等边三角形与,连结与,证明(1)(2)(3) 与之间的夹角为(4)(5)(6) 平分(7)变式精练1:如图两个等边三角形与,连结与,证明(1)(2)(3) 与之间的夹角为(4) 与的交点设为,平分变式精练2:如图两个等边三角形与,连结与,证明(1)(2)(3) 与之间的夹角为(4) 与的交点设为,平分例2:如图,两个正方形与,连结,二者相交于点问:(1)是否成立?(2)
2、 是否与相等?(3) 与之间的夹角为多少度?(4) 是否平分?例3:如图两个等腰直角三角形与,连结,二者相交于点问:(1)是否成立?(2)是否与相等?(3)与之间的夹角为多少度?(4)是否平分?例4:两个等腰三角形与,其中,连结与,问:(1)是否成立?(2)是否与相等?(3)与之间的夹角为多少度?(4)是否平分? 倍长与中点有关的线段倍长中线类考点说明:凡是出现中线或类似中线的线段,都可以考虑倍长中线,倍长中线的目的是可以旋转等长度的线段,从而达到将条件进行转化的目的。【例1】 已知:中,是中线求证:【练1】在中,则边上的中线的长的取值范围是什么?【练2】如图所示,在的边上取两点、,使,连接、
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 全等 三角形 手拉手 模型 中线 截长补短
限制150内