函数点对称线对称及周期总结(共3页).doc
《函数点对称线对称及周期总结(共3页).doc》由会员分享,可在线阅读,更多相关《函数点对称线对称及周期总结(共3页).doc(3页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上函数对称性、周期性全解析函数对称性、周期性是函数这一部分在历年高考中的一个重点,现在全部解析如下:一、 同一函数的周期性、对称性问题(即函数自身)1、 周期性:对于函数,如果存在一个不为零的常数T,使得当x取定义域内的每一个值时,都有都成立,那么就把函数叫做周期函数,不为零的常数T叫做这个函数的周期。如果所有的周期中存在着一个最小的正数,就把这个最小的正数叫做最小正周期。2、 对称性定义(略),请用图形来理解。3、 对称性:我们知道:偶函数关于y(即x=0)轴对称,偶函数有关系式 奇函数关于(0,0)对称,奇函数有关系式 上述关系式是否可以进行拓展?答案是肯定的 探讨
2、:(1)函数关于对称 也可以写成 或 简证:设点在上,通过可知,即点上,而点与点关于x=a对称。得证。 若写成:,函数关于直线 对称 (2)函数关于点对称 或 简证:设点在上,即,通过可知,所以,所以点也在上,而点与关于对称。得证。 若写成:,函数关于点 对称 (3)函数关于点对称:假设函数关于对称,即关于任一个值,都有两个y值与其对应,显然这不符合函数的定义,故函数自身不可能关于对称。但在曲线c(x,y)=0,则有可能会出现关于对称,比如圆它会关于y=0对称。4、 周期性: (1)函数满足如下关系系,则 A、 B、 C、或(等式右边加负号亦成立) D、其他情形 (2)函数满足且,则可推出即可
3、以得到的周期为2(b-a),即可以得到“如果函数在定义域内关于垂直于x轴两条直线对称,则函数一定是周期函数” (3)如果奇函数满足则可以推出其周期是2T,且可以推出对称轴为,根据可以找出其对称中心为(以上) 如果偶函数满足则亦可以推出周期是2T,且可以推出对称中心为,根据可以推出对称轴为 (以上) (4)如果奇函数满足(),则函数是以4T为周期的周期性函数。如果偶函数满足(),则函数是以2T为周期的周期性函数。二、 两个函数的图象对称性1、 与关于X轴对称。换种说法:与若满足,即它们关于对称。2、 与关于Y轴对称。换种说法:与若满足,即它们关于对称。3、 与关于直线对称。换种说法:与若满足,即它们关于对称。4、 与关于直线对称。换种说法:与若满足,即它们关于对称。5、 关于点(a,b)对称。换种说法:与若满足,即它们关于点(a,b)对称。6、 与关于直线对称。专心-专注-专业
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 函数 对称 周期 总结
限制150内