分层抽样教案(共4页).doc
《分层抽样教案(共4页).doc》由会员分享,可在线阅读,更多相关《分层抽样教案(共4页).doc(4页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上2.1.3 分层抽样 学习目标 知识与技能:1.正确理解分层抽样的概念.2.掌握分层抽样的一般步骤.3.区分简单随机抽样、系统抽样和分层抽样,并选择适当正确的方法进行抽样.过程与方法:通过对现实生活中实际问题进行分层抽样,感知应用数学知识解决实际问题的方法.情感态度与价值观:通过对统计学知识的研究,感知数学知识中“估计”与“精确”性的矛盾统一,培养学生的辩证唯物主义的世界观与价值观.重点与难点:正确理解分层抽样的定义,灵活应用分层抽样抽取样本,并恰当的选择三种抽样方法解决现实生活中的抽样问题. 教学过程 A. 创设情景,设问导入新课提出问题:若要调查某学校高一学生的平
2、均身高,抽样时采用简单随机抽样或系统抽样是否可行?设计意图:引导学生明确以下事实,结合经验知,男生一般要比女生高,若采用简单随机抽样或系统抽样都有可能产生绝大部分是男生(或女生)或全是男生(或女生)的样本.这说明在设计抽样方法时,充分利用事先对总体情况的了解是非常重要的,这样才能使抽取的样本具有好的代表性. 为此,本问题中应采用另一种抽样方法分层抽样.B.由实例导出概念1.分层抽样的概念可由下面的实例归纳得到.实例 假设某地区有高中生2400人,初中生10900人,小学生11000人,此地教育部门为了了解本地区中小学的近视情况及其形成原因,要从本地区的小学生中抽取1%的学生进行调查,你认为应当
3、怎样抽取样本?分析:影响学生视力的因素是非常复杂的.例如,不同年龄阶段的近视情况可能存在明显差异.因此,宜将全体学生分成高中、初中和小学三部分分别抽样.另外,三部分学生人数相差较大,因此,为了提高样本的代表性,还应考虑它们在样本中所占比例的大小.解:抽样比=1:100,样本中包含的高中生、初中生、小学生人数分别为,.即应抽取24名高中生,109名高中生和110名小学生作为样本.2.分层抽样一般地,要从容量为的总体中抽取容量为的样本,将总体分成互不交叉的层,从各层独立地抽取一定数量的个体,将各层取出的个体和在一起作为一个样本,这种抽样方法叫做分层抽样.注:分层抽样的特点:(1)适用总体:是由差异
4、明显的几部分组成. (2)各层按比例抽取个体.(3)各层内每个个体等可能入样,视各层个体数情况选用简单随机抽样方法或系统抽样方法.3.分层抽样的步骤:(1)分层:相似的个体归为一层,且各层互不交叉,也不遗漏.(2)确定各层入样个体数:入样个体数=该层个体数抽样比(样本容量:总体容量).(3)抽取各层入样个体:各层个体数不多时,可用简单随机抽样方法;各层或某层个体数较多时,也可用系统抽样方法.(4)组样:每层抽取的个体组成样本.巩固训练题:1.某单位有老年人28人,中年人54人,青年人81人,为了调查他们的身体状况,从他们中抽取容量为36的样本,最适合抽取样本的方法是 DA.简单随机抽样 B.系
5、统抽样C.分层抽样 D.先从老年人中剔除1人,再用分层抽样分析:总人数为28+54+81=163样本容量为36,由于总体由差异明显的三部分组成,考虑用分层抽样.若按36163取样,无法得到整解,故考虑先剔除1人,抽取比例变为36162=29,则中年人取12人,青年人取18人,先从老年人中剔除1人,老年人取6人,组成36的样本.2.某城区有农民、工人、知识分子家庭共计2 000家,其中农民家庭1 800户,工人家庭100户现要从中抽取容量为40的样本,调查家庭收入情况,则在整个抽样过程中,可以用到下列抽样方法简单随机抽样 系统抽样 分层抽样A. B. C. D.分析:由于各家庭有明显差异,所以首
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 分层抽样 教案
限制150内