圆锥曲线定比弦的存在定理(共4页).doc
《圆锥曲线定比弦的存在定理(共4页).doc》由会员分享,可在线阅读,更多相关《圆锥曲线定比弦的存在定理(共4页).doc(4页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上圆锥曲线定比弦的存在定理摘要 本文研究了圆锥曲线中过定点并以此点为定比分点的弦的存在问题,给出了圆锥曲线中定比弦存在的较为一般的判定定理。关键词 圆锥曲线 定点 中点弦 定比弦首先给出如下定义:定义 设P点为定点,T为圆锥曲线,AB是它的弦,若AB所在直线过P点,且被P点所分成的有向线段代数长之比(定值),则AB便叫做T的定比弦。当时,定比弦即是中点弦。本文研究定比弦的存在定理,对此,我们有定理一 椭圆存在以P()(x02+ y020)为分点,为定比的定比弦的充要条件是:(1)当0时,()b2x02+a2y02a2b2;(2)当=0时,b2x02+a2y02=a2b2
2、()(3)当0时(-1),b2x02+a2y02()证明:设A(x,y),则B(),则有b2x2+a2y2=a2b2b2(1+)x0-x2+a2(1+)y0-y2=a2b22(*)两式相减,得b2(1+)2x02-2b2(1+)x0+a2(1+)2y02-2a2(1+)y0y-a2b2(2-1)=0(*)当y00时,y=代入,并化简得到:()假设弦AB存在,则,所以上述方程有实根,从而0,对其化简整理,得:0解此不等式,即得:(1)当0时,()b2x02+a2y02a2b2;(2)当=0时,b2x02+a2y02=a2b2(3)当0时(-1),b2x02+a2y02()当=0时,这时P点为(x
3、0,0).由(*)得:x=又因,即即,由此得(1)当0时,()x02a2(2)当=0时, x02=a2(3)当0时,x02()这个结论就是()式中取的情形,故不管是否零,()式总成立。()反过来,若()式成立,由于以上的推导过程可逆,因而以P(x0,y0)为分点,而以为定比的定比弦必存在。由于当x0=0时,y0=0时P为椭圆的中心,此时相应弦只能是中点弦,不能随的改变而改变,且中点弦亦不唯一,故P点不能为椭圆的中心。综上所述,可知定理一定成立。定理二 抛物线y2=2px(p0)存在以(x0,y0)为分点,以为定比的定比弦的充要条件是:(1)0(-1)时,()0;(2)=0时, () 证明:设A
4、(x,y),则B(),得 (* *)两式相减得到: (* *)当y00时,y=代入y2=2px,得()设弦AB存在,则xR,方程有实根,0,对此化简即得:(1)0(-1),(y02-2px0)0;(2)=0时,y02=2px0.当y0=0时,这时P点为(x0,0)由(* *)得x0=x,又因y2=2py,所以y2=2px00,由此得,当0时,x00,当=0时,x0=0.这个结论就是()式中取y0=0时的情形,故不管y0是否为零,()式总成立。反过来,若()式成立,由于以上推导过程可逆,因而以P(x0,y0)为分点,则以为定比的定比弦必存在.定理三 双曲线存在以P()(x02+y020)为分点,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 圆锥曲线 存在 定理
限制150内