北师大数学八年级上册第五章二元一次方程组解法(二)--加减法(提高)(共9页).doc
《北师大数学八年级上册第五章二元一次方程组解法(二)--加减法(提高)(共9页).doc》由会员分享,可在线阅读,更多相关《北师大数学八年级上册第五章二元一次方程组解法(二)--加减法(提高)(共9页).doc(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上二元一次方程组解法(提高)知识讲解【学习目标】1. 掌握加减消元法解二元一次方程组的方法; 2. 能熟练、正确、灵活掌握代入法和加减法解二元一次方程组;3会对一些特殊的方程组进行特殊的求解【要点梳理】要点一、加减消元法解二元一次方程组 两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法要点诠释:用加减消元法解二元一次方程组的一般步骤: (1)方程组的两个方程中,如果同一个未知数的系数既不互为相反数,又不相等,那么就用适当的数乘方程的两边,使同一个未知数的系数互为相
2、反数或相等;(2)把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程;(3)解这个一元一次方程,求得一个未知数的值;(4)将这个求得的未知数的值代入原方程组中的任意一个方程中,求出另一个未知数的值,并把求得的两个未知数的值用“大括号”联立起来,就是方程组的解要点二、选择适当的方法解二元一次方程组 解二元一次方程组的基本思想(一般思路)是消元,消元的方法有两种:代入消元和加减消元,通过适当练习做到巧妙选择,快速消元【典型例题】类型一、加减法解二元一次方程组1. (2015春澧县期末)用加减消元法解方程组【思路点拨】先将原方程写成方程组的形式后,再求解.【答案与解析】解:此式可化
3、为:由(1):3x+4y=18 (1)由(2):6x+5y=27 (2)(1)2:6x+8y=36 (3)(3)(2):3y=9 y=3代入(1):3x+12=18 3x=6 x=2【总结升华】先将每个式子化至最简,即形如ax+by=c的形式再消元.举一反三:【变式】方程组的解为: .【答案】2. (2016春新乡期末)若关于x、y的二元一次方程组的解为,求关于x、y的方程组的解【思路点拨】如果用一般方法来解答此题,很难达到目标,观察发现,两方程的系数相同,只是未知数的呈现方式不同,如果我们把2x+y,x-y看作一个整体,则两个方程同解【答案与解析】 解:方程组的解仅仅与未知数的系数有关,与未
4、知数选用什么字母无关,因此把(2x+y)与(x-y)分别看成一个整体当作未知数,可得 解得:【总结升华】本例采用了类比的方法,利用了消元的思想,消元的方法有:代入消元法与加减消元法举一反三:【变式】三个同学对问题“若方程组的解是,求方程组的解”提出各自的想法甲说:“这个题目好象条件不够,不能求解”;乙说:“它们的系数有一定的规律,可以试试”;丙说:“能不能把第二个方程组的两个方程的两边都除以5,通过换元替代的方法来解决”参考他们的讨论,你认为这个题目的解应该是: 【答案】解:由方程组的解是,得,上式可写成,与比较,可得:类型二、用适当方法解二元一次方程组3. 解方程组【思路点拨】解决本题有多种
5、方法:加减法或代入法,或整体代入法,整体代入法最简单.【答案与解析】解:设,则原方程组可化为解得即 ,所以解得所以原方程组的解为【总结升华】解一个方程组的方法一般有多种方法,我们要根据方程组的特点选择最简便的求解方法.举一反三:【变式】【答案】解:去分母,整理化简得,32得,即,将代入得,即,所以原方程组的解为.4. 试求方程组的解【答案与解析】解:,整理得 ,13y0,即y13,当时,可化为,解得;当时,可化为,无解.将代入,得,解得.综上可得,原方程组的解为:或.【总结升华】解含有绝对值的方程组,一般先转化为含绝对值的一元一次方程,再分类讨论求出解.举一反三:【变式】(2015春杭锦后旗校
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 北师大 数学 年级 上册 第五 二元 一次 方程组 解法 加减法 提高
限制150内