因式分解专题复习(精品)(共8页).docx
《因式分解专题复习(精品)(共8页).docx》由会员分享,可在线阅读,更多相关《因式分解专题复习(精品)(共8页).docx(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上因式分解专题复习例题讲解考点1 提取公因式法例1 ; 解:注:提取公因式的关键是从整体观察,准确找出公因式,并注意如果多项式的第一项系数是负的一般要提出“”号,使括号内的第一项系数为正.提出公因式后得到的另一个因式必须按降幂排列.练习1、; 考点2 运用公式法例2 把下列式子分解因式:; .解:注:能用平方差分解的多项式是二项式,并且具有平方差的形式.注意多项式有公因式时,首先考虑提取公因式,有时还需提出一个数字系数.例3把下列式子分解因式:; .解:注:能运用完全平方公式分解因式的多项式的特征是:有三项,并且这三项是一个完全平方式,有时需对所给的多项式作一些变形,使
2、其符合完全平方公式.练习2、; ; .注:整体代换思想:比较复杂的单项式或多项式时,先将其作为整体替代公式中字母.还要注意分解到不能分解为止.考点3、十字相乘法例5 ; .练习3、 考点4、分组分解法例6分解因式:(1); (2)(3)练习4分解因式:.分析:对于四项或四项以上的多项式的因式分解,一般采用分组分解法,。四项式一般采用“二、二”或“三、一”分组,五项式一般采用“三、二”分组,分组后再试用提公因式法、公式法或十字相乘法继续分解。答案:(1)(三、一分组后再用平方差) (2)(三、二分组后再提取公因式) (3)(三、二、一分组后再用十字相乘法)强化训练1一、填空:(30分)1、若是完
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 因式分解 专题 复习 精品
限制150内