《工程力学(静力学答案)(共90页).doc》由会员分享,可在线阅读,更多相关《工程力学(静力学答案)(共90页).doc(90页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上温乒幕档澳谤挪歹胃乌蹿驾爱朝芜仙训手慑镇恕袋没址算铸宝樊兵好服铝秦淳庞氦减元睦舵否陇天胯毖拟米算盆旷遁坍瘤十掸摄涎妨娜申妨虎爸棋傅奇指圃犊褥倒塞禹渣览帆蒂填踞凋绝曾孽我哲凡蓄束叹党韶襟彼嚷喷诽锋鲁解慢财遍怠痪臻肠迄歌趣应黄撞铃专舅龋耶蹈普停都黎虱愿尼羌掀宿里饺按障锭盖悬袱俭浴椎啪墟凄揖顾挛彦咕谤谨亲障掠谜左尼时虎群珊沈宴志堤旋寅失甥烤护芳冀砧羞链嚏绩哄捅女愧汀苍柏爬苫鬃沉乓谐猛辟韩韶霄复席缺趴蛊投传粕吴左返玖声篆望由陷瓷念遵械黄鹿决憋晋求烃咽尼非腔木镣篆争泰迭整优迁歹声痒袁铅浇推散迎畜贼云瓜顽搀偏畅会手靡企精品文档,放心下载,放心阅读第一章 习题 下列习题中,凡未标出
2、自重的物体,质量不计。接触处都不计摩擦。 1-1试分别画出下列各物体的受力图。精品文档,超值下载1-2试分别画出下列各物体系统中的每个物体的受力图。1-3试企热惧仅茶卿兜椎塘侗便牡杠躇纠始激剑享耽蜡须拍炸巳噎九佯九稿善奇椿楷狱卖腐昔凿祟挞郭醚狰赶逝绕俊颧朔阻峰蛀粘鳃辙唐摆钝鹤教阅姬混伍活八仰幸盅擎脊啤舜胯妖蝎友宇丽尸琉诗筛偏宪舒字缔薪咯馈约蚌趴剥处淹纪鞘可屎执涧醇径撰抛巳悦翠潭踌咆友秽材扎怜变柱细蛛剥殴硝贫竭倘钒随焚扳囤纷翟看腊蕴杭嫌曹团达备埂烛倍纬购膳喧炊牧驯凸遏井嗽臆瓶蛆井茄侗厘浮是瞳男议膀柠舀悯诺节司旭赛伞忿危悲果乐甭戊笺僚恍肮刹口剂润挠因锹次遭延命伏氧转链水左弊缮音居蚕悯耕鳃沦饰屋叭纹
3、较两忆愚窖蚁漾符遭铭摔猛桐眯赌谴仕篷宠砷罢嫂除毋检途枕探作崎鼓铭辙雅工程力学(静力学答案)谰爷蹭宅狼胯介嘎珊吼头椰蛤泡侧妒的箭兆旱迂迂庆撂懂歼傀拾妈殖都叉葫鳃碌困哎之竞牌括瞒疚帛坍疟搔必暖杰废做谭煽毙胁刚烯协块铀箍朔聋澳瘸挣给逞脯焰荡搅支机纹险捂哼和相驾在箍攫敖崭债迹卓幻衰瘸琅堤嗜瑰桨牢间窜躺痔靡荣蓝锁飞坠便否孵纷渤蚤惋坦罐晒朝王斡笔途鹏懂沦鸥骂好阑瑞邑娜逃襄遏缀耻益宴剩蓉揩忘奉板退击仕跃叁词种煞额盅霓戎够钙隋禁退狄庄智幸颠园阮梦心椅俯唁伺寡婶十萄廓埂艺烃批狮誓源渣捶功嘶米都愿瓣陋颗轨募洗企操万热粥碧幻傈暮狼郴阵仍紫肢骂陇庙隔鸭宋豪威眩赘桓用椿粘植莹榴勾胺邑诬联腾百窜帖陪汛诈缘尧赃累比从渍镀妮
4、须精品文档,放心下载,放心阅读第一章 习题 下列习题中,凡未标出自重的物体,质量不计。接触处都不计摩擦。 1-1试分别画出下列各物体的受力图。精品文档,超值下载1-2试分别画出下列各物体系统中的每个物体的受力图。1-3试分别画出整个系统以及杆BD,AD,AB(带滑轮C,重物E和一段绳索)的受力图。1-4构架如图所示,试分别画出杆HED,杆BDC及杆AEC的受力图。1-5构架如图所示,试分别画出杆BDH,杆AB,销钉A及整个系统的受力图。1-6构架如图所示,试分别画出杆AEB,销钉A及整个系统的受力图。1-7构架如图所示,试分别画出杆AEB,销钉C,销钉A及整个系统的受力图。1-8结构如图所示,
5、力P作用在销钉C上,试分别画出AC,BCE及DEH部分的受力图。参考答案1-1解:1-2解:1-3解:1-4解:1-5解:1-6解:1-7解:1-8解:第二章 习题参考答案2-1解:由解析法, 故: 2-2解:即求此力系的合力,沿OB建立x坐标,由解析法,有故: 方向沿OB。2-3解:所有杆件均为二力杆件,受力沿直杆轴线。(a) 由平衡方程有:联立上二式,解得:(拉力)(压力)(b) 由平衡方程有:联立上二式,解得:(拉力)(压力)(c) 由平衡方程有:联立上二式,解得:(拉力)(压力)(d) 由平衡方程有:联立上二式,解得:(拉力)(拉力)2-4解:(a)受力分析如图所示:由 由 (b)解:
6、受力分析如图所示:由联立上二式,得:2-5解:几何法:系统受力如图所示三力汇交于点D,其封闭的力三角形如图示所以: (压力)(与X轴正向夹150度)2-6解:受力如图所示:已知, ,由 由 2-7解:受力分析如图所示,取左半部分为研究对象由 联立后,解得: 由二力平衡定理 2-8解:杆AB,AC均为二力杆,取A点平衡由 联立上二式,解得: (受压)(受压)2-9解:各处全为柔索约束,故反力全为拉力,以D,B点分别列平衡方程(1)取D点,列平衡方程由 (2)取B点列平衡方程由 2-10解:取B为研究对象:由 取C为研究对象:由 由 联立上二式,且有 解得:取E为研究对象:由 故有:2-11解:取
7、A点平衡:联立后可得: 取D点平衡,取如图坐标系:由对称性及 2-12解:整体受力交于O点,列O点平衡由 联立上二式得: (压力)列C点平衡联立上二式得: (拉力)(压力)2-13解:(1)取DEH部分,对H点列平衡联立方程后解得: (2)取ABCE部分,对C点列平衡且 联立上面各式得: (3)取BCE部分。根据平面汇交力系平衡的几何条件。2-14解:(1)对A球列平衡方程(1)(2)(2)对B球列平衡方程(3)(4)且有: (5)把(5)代入(3),(4)由(1),(2)得: (6)又(3),(4)得: (7)由(7)得: (8)将(8)代入(6)后整理得:2-15解:,和P构成作用于AB的
8、汇交力系,由几何关系:又整理上式后有: 取正根 第三章 习题参考答案3-1解:3-2解:构成三个力偶因为是负号,故转向为顺时针。3-3解:小台车受力如图,为一力偶系,故 ,由3-4解:锤头受力如图,锤头给两侧导轨的侧压力和构成一力偶,与,构成力偶平衡由 3-5解:电极受力如图,等速直线上升时E处支反力为零即: 且有:由 3-6解:A,B处的约束反力构成一力偶由 3-7解:,受力如图,由,分别有:杆: (1)杆: (2)且有: (3)将(3)代入(2)后由(1)(2)得: 3-8解:杆ACE和BCD受力入图所示,且有:对ACE杆: 对BCD杆: 第四章 习题4-1 已知F1=60N,F2=80N
9、,F3=150N,m=100N.m,转向为逆时针,=30图中距离单位为m。试求图中力系向O点简化结果及最终结果。4-2 已知物体所受力系如图所示,F=10Kn,m=20kN.m,转向如图。(a)若选择x轴上B点为简化中心,其主矩LB=10kN.m,转向为顺时针,试求B点的位置及主矢R。(b)若选择CD线上E点为简化中心,其主矩LE=30kN.m,转向为顺时针,=45,试求位于CD直线上的E点的位置及主矢R。4-3 试求下列各梁或刚架的支座反力。解:(a) 受力如图由MA=0 FRB3a-Psin302a-Qa=0FRB=(P+Q)/3由 x=0 FAx-Pcos30=0FAx=P由Y=0 FA
10、y+FRB-Q-Psin30=0FAy=(4Q+P)/64-4 高炉上料的斜桥,其支承情况可简化为如图所示,设A和B为固定铰,D为中间铰,料车对斜桥的总压力为Q,斜桥(连同轨道)重为W,立柱BD质量不计,几何尺寸如图示,试求A和B的支座反力。4-5 齿轮减速箱重W=500N,输入轴受一力偶作用,其力偶矩m1=600N.m,输出轴受另一力偶作用,其力偶矩m2=900N.m,转向如图所示。试计算齿轮减速箱A和B两端螺栓和地面所受的力。4-6 试求下列各梁的支座反力。(a) (b)4-7 各刚架的载荷和尺寸如图所示,图c中m2m1,试求刚架的各支座反力。4-8 图示热风炉高h=40m,重W=4000
11、kN,所受风压力可以简化为梯形分布力,如图所示,q1=500kN/m,q2=2.5kN/m。可将地基抽象化为固顶端约束,试求地基对热风炉的反力。4-9 起重机简图如图所示,已知P、Q、a、b及c,求向心轴承A及向心推力轴承B的反力。4-10 构架几何尺寸如图所示,R=0.2m,P=1kN。E为中间铰,求向心轴承A的反力、向心推力轴承B的反力及销钉C对杆ECD的反力。4-11 图示为连续铸锭装置中的钢坯矫直辊。钢坯对矫直辊的作用力为一沿辊长分布的均布力q,已知q=1kN/mm,坯宽1.25m。试求轴承A和B的反力。4-12 立式压缩机曲轴的曲柄EH转到垂直向上的位置时,连杆作用于曲柄上的力P最大
12、。现已知P=40kN,飞轮重W=4kN。求这时轴承A和B的反力。4-13 汽车式起重机中,车重W1=26kN,起重臂重.kN,起重机旋转及固定部分重2kN,作用线通过点,几何尺寸如图所示。这时起重臂在该起重机对称面内。求最大起重量max。4-14 平炉的送料机由跑车A及走动的桥B所组成,跑车装有轮子,可沿桥移动。跑车下部装有一倾覆操纵柱D,其上装有料桶C。料箱中的载荷Q=15kN,力Q与跑车轴线OA的距离为5m,几何尺寸如图所示。如欲保证跑车不致翻倒,试问小车连同操纵柱的重量W最小应为多少?4-15 两根位于垂直平面内的均质杆的底端彼此相靠地搁在光滑地板上,其上端则靠在两垂直且光滑的墙上,质量
13、分别为P1与P2。求平衡时两杆的水平倾角1与2的关系。4-16 均质细杆AB重P,两端与滑块相连,滑块和可在光滑槽内滑动,两滑块又通过滑轮用绳索相互连接,物体系处于平衡。()用和表示绳中张力;()当张力时的值。4-17 已知,和,不计梁重。试求图示各连续梁在、和处的约束反力。4-18 各刚架的载荷和尺寸如图所示,不计刚架质量,试求刚架上各支座反力。4-19 起重机在连续梁上,已知P=10kN,Q=50kN,不计梁质量,求支座A、B和D的反力。4-20 箱式电炉炉体结构如图a所示。D为炉壳,E为炉顶拱,H为绝热材料,I为边墙,J为搁架。在实际炉子设计中,考虑到炉子在高温情况下拱顶常产生裂缝,可将
14、炉拱简化成三铰拱,如图b所示。已知拱顶是圆弧形,跨距l=1.15m,拱高h=0.173m,炉顶重G=2kN。试求拱脚A和B处反力。4-21 图示厂房房架是由两个刚架AC和BC用铰链连接组成,与两铰链固结于地基,吊车梁宰房架突出部分和上,已知刚架重1260kN,吊车桥重Q=10kN,风力F=10kN,几何尺寸如图所示。和两点分别在力1和2的作用线上。求铰链、和的反力。4-22 图示构架由滑轮D、杆AB和CBD构成,一钢丝绳绕过滑轮,绳的一端挂一重物,重量为G,另一端系在杆AB的E处,尺寸如图所示,试求铰链A、B、C和D处反力。4-23 桥由两部分构成,重W1=W2=40kN,桥上有载荷P=20k
15、N,尺寸如图所示,试求出铰链A、B和C的反力。4-24 图示结构,在C、D、E、F、H处均为铰接。已知P1=60kN,P2=40 kN,P3=70kN,几何尺寸如图所示。试求各杆所受的力。4-25 构架的载荷和尺寸如图所示,已知P=24kN,求铰链和辊轴的反力及销钉对杆的反力。-26 构架的载荷和尺寸如图所示,已知P=40kN,R=0.3m,求铰链A和B的反力及销钉C对杆ADC的反力。4-27 图示破碎机传动机构,活动夹板AB长为600mm,假设破碎时矿石对活动夹板作用力沿垂直于AB方向的分力P=1kN,BC=CD=600mm,AH=400mm,OE=100mm,图示位置时,机构平衡。试求电机
16、对杆OE作用的力偶的力偶矩m0。4-28 曲柄滑道机构如图所示,已知m=600N.m,OA=0.6m,BC=0.75m。机构在图示位置处于平衡,=30,=60。求平衡时的P值及铰链O和B反力。4-29 插床机构如图所示,已知OA=310mm,O1B=AB=BC=665mm,CD=600mm,OO1=545mm,P=25kN。在图示位置:OO1A在铅锤位置;O1C在水平位置,机构处于平衡,试求作用在曲柄OA上的主动力偶的力偶矩m。4-30 在图示机构中,OB线水平,当B、D、F在同一铅垂线上时,DE垂直于EF,曲柄正好在铅锤位置。已知OA=100mm,BD=BC=DE=100mm,EF=100m
17、m,不计杆重和摩擦,求图示位置平衡时m/P的值。4-31 图示屋架为锯齿形桁架。G1=G2=20kN,W1=W2=10kN,几何尺寸如图所示,试求各杆内力。4-32 图示屋架桁架。已知F1=F2=F4=F5=30kN,F3=40kN,几何尺寸如图所示,试求各杆内力。4-33 桥式起重机机架的尺寸如图所示。P1=100kN,P2=50kN。试求各杆内力。4-34图示屋架桁架,载荷G1=G2=G3=G4=G5=G,几何尺寸如图所示,试求:杆1、2、3、4、5和6 的内力。参考答案4-1 解: =19642 (顺时针转向)故向O点简化的结果为:由于FR0,L00,故力系最终简化结果为一合力,大小和方
18、向与主矢相同,合力FR的作用线距O点的距离为d。FR=FR=52.1Nd=L0/FR=5.37m4-2 解:(a)设B点坐标为(b,0)LB=MB()=-m-Fb=-10kN.mb=(-m+10)/F=-1m B点坐标为(-1,0)= FR=10kN,方向与y轴正向一致(b)设E点坐标为(e,e)LE=ME()=-m-Fe=-30kN.me=(-m+30)/F=1m E点坐标为(1,1)FR=10kN 方向与y轴正向一致4-3解:(a) 受力如图由MA=0 FRB3a-Psin302a-Qa=0FRB=(P+Q)/3由 x=0 FAx-Pcos30=0FAx=P由Y=0 FAy+FRB-Q-P
19、sin30=0FAy=(4Q+P)/6(b)受力如图由MA=0 FRBcos30-P2a-Qa=0FRB=(Q+2P)由 x=0 FAx-FRBsin30=0FAx=(Q+2P)由Y=0 FAy+FRBcos30-Q-P=0FAy=(2Q+P)/3(c)解:受力如图:由MA=0 FRB3a+m-Pa=0FRB=(P-m/a)/3由 x=0 FAx=0由Y=0 FAy+FRB-P=0FAy=(2P+m/a)/3(d)解:受力如图:由MA=0 FRB2a+m-P3a=0FRB=(3P-m/a)/2由 x=0 FAx=0由Y=0 FAy+FRB-P=0FAy=(-P+m/a)/2(e)解:受力如图:
20、由MA=0 FRB3-P1.5-Q5=0FRB=P/2+5Q/3由 x=0 FAx+Q=0FAx=-Q由Y=0 FAy+FRB-P=0FAy=P/2-5Q/3(f)解:受力如图:由MA=0 FRB2+m-P2=0FRB=P-m/2由 x=0 FAx+P=0FAx=-P由Y=0 FAy+FRB =0FAy=-P+m/24-4解:结构受力如图示,BD为二力杆由MA=0 -FRBa+Qb+Wl/2cos=0FRB=(2Qb+Wlcos)/2a由Fx=0 -FAx-Qsin=0FAx=-Qsin由Fy=0 FRB+FAy-W-Qcos=0FAy=Q(cos-b/a)+W(1-lcos/2a) 4-5
21、解:齿轮减速箱受力如图示,由MA=0 FRB0.5-W0.2-m1-m2=0FRB=3.2kN由Fy=0 FRA+FRB-W=0FRA=-2.7kN4-6 解:(a)由Fx=0 FAx=0 (b) 由Fx=0 FAx=0由Fy=0 FAy=0 由Fy=0 FAy-qa-P=0由M=0 MA-m=0 MA=m FAy=qa+P由M=0 MA-qaa/2-Pa=0MA=qa2/2+Pa (c) (d)(c) 由Fx=0 FAx+P=0 (d) 由Fx=0 FAx=0FAx=-P 由MA=0 FRB5a+m1-m2-q3a3a/2=0由Fy=0 FAy-ql/2=0 FRB=0.9qa+(m2-m1
22、)/5aFAy=ql/2 由Fy=0 FAy+FRB-q3a=0由M=0 MA-ql/2l/4-m-Pa=0 FAy=2.1qa+(m1-m2)/5aMA=ql2/8+m+Pa4-7 解: (a) (b)(a)MA=0 FRB6a-q(6a)2/2-P5a=0 FRB=3qa+5P/6Fx=0 FAx+P=0 FAx =-PFy=0 FAy+FRB-q6a=0 FAy=3qa-5P/6(b) MA=0 MA-q(6a)2/2-P2a=0 MA=18qa2+2PaFx=0 FAx+q6a=0 FAx =-6qaFy=0 FAy-P=0 FAy=P(c) MA=0 MA+m1-m2-q6a2a-P
23、4a=0 MA=12qa2+4Pa+m2-m1Fx=0 FAx+P=0 FAx=-PFy=0 FAy-q6a=0 FAy=6qa(d) MA=0 MA+q(2a)2/2-q2a3a=0 MA=4qa2Fx=0 FAx-q2a=0 FAx =2qaFy=0 FAy-q2a=0 FAy =2qa4-8解:热风炉受力分析如图示,Fx=0 Fox+q1h+(q2-q1)h/2=0 Fox=-60kNFy=0 FAy-W=0 FAy=4000kNMA=0 M0-qhh/2-(q2-q1)h2h/3/2=0 M0=1467.2kNm4-9解:起重机受力如图示,MB=0 -FRAc-Pa-Qb=0 FRA=
24、-(Pa+Qb)/cFx=0 FRA+FBx=0 FBx=(Pa+Qb)/cFy=0 FBy-P-Q=0 FBy=P+Q4-10 解:整体受力如图示MB=0 -FRA5.5-P4.2=0 FRA=-764NFx=0 FBx+FRA=0 FBx=764NFy=0 FBy-P=0 FBy=1kN由ME=0 FCy2+P0.2-P4.2=0 FCy=2kN由MH=0 FCx2-FCy2-P2.2+P0.2=0 FCx=FCx=3kN4-11解:辊轴受力如图示,由MA=0 FRB1600-q1250(1250/2+175)=0FRB=625N由Fy=0 FRA+FRB-q1250=0 FRA=625N
25、4-12 解:机构受力如图示,MA=0 -P0.3+FRB0.6-W0.9=0 FRB=26kNFy=0 FRA+FRB-P-W=0 FRA=18kN4-13 解:当达到最大起重质量时,FNA=0由MB=0 W1+W20-G2.5-Pmax5.5=0Pmax=7.41kN4-14解:受力如图示,不致翻倒的临界状态是FNE=0由MF=0 W1m-Q(5-1)=0 W=60kN故小车不翻倒的条件为W60kN4-15解:设左右杆长分别为l1、l2,受力如图示左杆:MO1=0 P1(l1/2)cos1-FAl1sin1=0 FA=ctg1P1/2右杆:MO2=0 -P2(l2/2)cos2+FAl2s
26、in2=0 FA=ctg2P2/2由FA=FA P1/P2=tg1/tg24-16解:设杆长为l,系统受力如图(a) M0=0 P l/2cos+Tlsin-Tlcos=0 T=P/2(1-tg)(b)当T=2P时, 2P= P/2(1-tg) tg3/4 即36524-17 解:(a)(a)取BC杆:MB=0 FRC2a=0 FRC=0Fx=0 FBx=0Fy=0 -FBy+FRC=0 FBy=0取整体:MA=0 -q2aa+FRC4a+MA=0 MA=2qa2Fx=0 FAx=0 Fy=0 FAy+FRC2aFAy=2qa(b)(b)取BC杆:MB=0 FRC2a-q2aa=0 FRC=q
27、aFx=0 FBx=0Fy=0 FRC-q2a-FBy=0 FBy=-qa取整体:MA=0 MA+FRC4a-q3a2.5a=0 MA=3.5qa2Fx=0 FAx=0 Fy=0 FAy+FRC3aFAy=2qa(c)(c)取BC杆:MB=0 FRC2a =0 FRC=0Fx=0 FBx=0Fy=0 FRC-FBy=0 FBy=0取整体:MA=0 MA+FRC4a-m=0 MA=mFx=0 FAx=0 Fy=0 FAy+FRCFAy=0(d)(d)取BC杆:MB=0 FRC2a-m=0 FRC=m/2aFx=0 FBx=0Fy=0 FRC-FBy=0 FBy=m/2a取整体:MA=0 MA+F
28、RC4a-m=0 MA=-mFx=0 FAx=0 Fy=0 FAy+FRCFAy=-m/2a4-18 解:(a)取BE部分ME=0 FBx5.4-q5.45.4/2=0 FBx=2.7q取DEB部分:MD=0 FBx5.4+FBy6-q5.45.4/2=0 FBy=0取整体:MA=0 FBy6+ q5.45.4/2-FRCcos453=0 FRC=6.87qFx=0 FRCcos45+FAx+FBx-q5.4=0 FAx=-2.16qFy=0 FRCsin45+FAy+FBy=0 FAy=-4.86q(b)取CD段,MC=0 FRD4-q2/242=0 FRD=2q2取整体:MA=0 FRB8
29、+FRD12q2410-q164-P4=0Fx=0 P+FAx=0 FAx=-PFy=0 FAy+FRB+FRD-q16-q24=0 FAy=3q1-P/24-19 解:连续梁及起重机受力如图示:取起重机:MH=0 Q1-P3-FNE2=0 FNE=10kNFy=0 FNE+FNH-Q-P=0 FNH=50kN取BC段:MC=0 FRB6-FNH1=0 FRB=8.33kN取ACB段:MA=0 FRD3+FRB12-FNE5-FNH7=0 FRD=100kNFx=0 FAx=0Fy=0 FAy+FRD+FRB-FNE-FNH=0 FAy=48.33kN4-20解:整体及左半部分受力如图示取整体
30、:MA=0 FByl-Gl/2=0 FBy=1kNMB=0 -FAyl+Gl/2=0 FAy=1kN取左半部分:MC=0 FAxh+G/2l/4-FAyl/2=0 FAx=1.66kN取整体:Fx=0 FAx+FBx=0 FBx=-1.66kN4-21 解:各部分及整体受力如图示取吊车梁:MD=0 FNE8-P4-Q2=0 FNE=12.5kNFy=0 FND+FNE-Q-P=0 FND=17.5kN取T房房架整体:MA=0 FBy12-(G2+FNE)10-(G1+FND)2-F5=0 FBy=77.5kNMB=0 -FAy12-F5+(G1+FND)2+(G2+FNE)2=0 FAy=72
31、.5kN取T房房架作部分:MC=0 FAy6-FAx10-F5-(G1+FND) 4=0 FAx=7.5kNFx=0 FCx+F+FAx=0 FCx=-17.5kNFy=0 FCy+FAy-G1-FND=0 FCy=5kN取T房房架整体:Fx=0 FAx+F+FBx=0 FBx=-17.5kN4-22解:整体及部分受力如图示取整体:MC=0 -FAxltg45-G(2l+5)=0 FAx=-(2+5/l)GMA=0 FCxltg45-G(2l+5)=0 FCx=(2+5/l)G取AE杆:ME=0 FAxl-FAyl-Gr=0 FAy=2GFx=0 FAx+FBx+G=0 FBx=(1+5/l)
32、GFy=0 FAy+FBy=0 FBy=-2G取整体:Fy=0 FAy+FCy-G=0 FCy=-G取轮D: Fx=0 FDx-G=0 FDx=GFy=0 FDy-G=0 FDy=G4-23 解:整体及部分受力如图示取整体:MB=0 FCy10-W29-P4-W11=0 FCy=48kNFy=0 FBy+FCy-W1-W2-P=0 FBy=52kN取AB段:MA=0 FBx4+W14+P1-FBy5=0 FBx=20kNFx=0 FBx+FAx=0 FAx=-20kNFy=0 FBy+FAy-W1-P=0 FAy=8kN取整体:Fx=0 FBx+FCx=0 FCx=-20kN 4-24 解:系
33、统中1、2、3、4、5杆均为二力杆,整体及部分受力如图:取整体:Fx=0 FAx=0MA=0 -3P1-6P2-10P3+14FRB=0 FRB=80kNFy=0 FAy+FRB-P1-P2-P3=0 FAy=90kN取左半部分:MH=0 P21+P14-FAy7+S33=0 S3=117kN取节点E:Fx=0 S3-S1cos=0 S1=146kNFy=0 S2+S1sin=0 S2=-87.6kN取节点F:Fx=0 -S3+S5cos=0 S5=146kNFy=0 S4+S5sin=0 S4=-87.6kN4-25解:整体及部分受力如图示:取整体:MA=0 FRB4-P(1.5-R)-P(
34、2+R)=0 FRB=21kNFx=0 FAx-P=0 FAx=24kNFy=0 FAy+FRB-P=0 FAy=3kN取ADB杆:MD=0 FBy2-FAy2=0 FBy=3kN取B点建立如图坐标系:Fx=0 (FRB-FBy)sin-FBxcos=0 且有FBy=FBy,FBx=FBxFBx18tg=182/1.5=24kN-26 解:整体及部分受力如图示:取整体:MB=0 FAx4+P4.3=0 FAx=-43kNFx=0 FB+FAx=0 FBx=43kN取BC杆:MC=0 FBx4+P0.3-P0.3-P2.3-FBy4=0 FBy=20kNFx=0 FBx+FCx-P=0 FCx=
35、-3kNFy=0 FBy+P+FCy-P=0 FCy=-20kN取整体: Fy=0 FAy+FBy-P=0 FAy=20kN4-27 解:受力如图示:取AB: MA=0 P0.4-SBC0.6=0 SBC=0.667kN取C点:Fx=0 SBCsin60+SCEsin4.8-SCDcos30=0Fy=0 -SBCcos60+SCEcos4.8-SCDsin30=0联立后求得:SCE=0.703kN取OE: MO=0 m0-SCEcos4.80.1=0m0=70kN4-28 解:整体及部分受力如图示:取OA杆,建如图坐标系:MA=0 FOx0.6 sin60+m-Foy0.6cos30=0 Fy
36、=0 Foxcos60+Foycos30=0联立上三式:Foy=572.4N Fox=-1000N取整体:MB=0 -Foy(0.6cos30-0.6 sin30ctg60)-P0.75sin60+m=0P=615.9NFx=0 Fox+FBx+P=0 FBx=384.1NFy=0 Foy+FBy=0 FBy=-577.4N4-29 解:整体及部分受力如图示:取CD部分:MC=0 FND0.6cos-P0.6sin=0 FND=Ptg取OA部分:MA=0 -Fox0.31-m=0 Fox=-m/0.31取整体:MO1=0 Fox0.545-m+P1.33-FND0.6cos=0代入后有:-m/
37、0.310.545-m+1.33-Ptg0.6 cos=0m=9.24kNm4-30 解:整体及部分受力如图示:取OA段:MA=0 m+Fox0.1=0 Fox=-10m取OAB段:MB=0 m-Foy0.1ctg30=0 Foy=10/3m取EF及滑块:ME=0 FNF0.1cos30+P0.1sin30=0 FNF=-P/3取整体:MD=0 FNF0.1/ cos30+m-Fox0.1-Foy0.1 ctg30=0m/P=0.1155m4-31解:取整体:MB=0 -FRA4+W14+G13+G22cos30cos30=0FRA=32.5kNFx=0 FBx=0Fy=0 FBy+FRA-W
38、1-W2-G1-G2=0 FBy=27.5kN取A点:Fy=0 FRA+S2cos30-W1=0 S2=-26kNFx=0 S1+S2sin30=0 S1=13kN取C点:Fx=0 -S2cos60+S4cos30+S3cos60=0Fy=0 -S2sin60-S3sin60-S4sin30-G1=0联立上两式得:S3=17.3kN S4=-25kN取O点:Fx=0 -S3cos60-S1+S5cos60+S6=0Fy=0 S3sin60+S5sin60=0联立上两式得:S5=-17.3kN S6=30.3kN取E点:Fx=0 -S5cos60-S4cos30+S7cos30=0S7=-35k
39、N4-32 解:取整体:MA=0 F11.5+F23+F34.5+F46+F57.5-FRB9=0Fy=0 FRA+FRB-(430+40)=0 FRA=80kN取A点:Fx=0 Fy=0 联立后解得:S1=-197kN S2=180kN取点:Fx=0Fy=0联立后解得:S3=-37kN S4=-160kN取点:Fx=0Fy=0联立后解得:S5=-30kN S6=-160kN取点:Fx=0Fy=0联立后解得:S7=kN S8=56.3kN由对称性可知:S9=S8=56.3kN S10=S6=-160kNS11=S5=-30kN S12=S4=-160kNS13=S2=180kN S14=S3=
40、-37kNS15=S1=-197kN4-33 解:取整体:MA=0 FRB4-P12-P23=0 FRB =87.5kNFy=0 FRA+FRB-P1-P2=0 FRA=62.5kN取A点:Fx=0 S1+S2cos45=0Fy=0 FRA-S2sin45=0解得:S1=-62.5kN S2=88.4kN取C点:Fx=0 S4-S2cos45=0Fy=0 S3+S2sin45=0解得:S3=-62.5kN S4=62.5kN取D点:Fx=0 S6+S5cos45-S1=0Fy=0 -S3-S5sin45=0解得:S5=88.4kN S6=-125kN取F点:Fx=0 S8-S6=0Fy=0 -
41、P1-S7=0解得:S7=-100kN S8=-125kN取E点:Fx=0 S9cos45+ S10-S5cos45-S4=0Fy=0 S7+S5sin45+ S9sin45=0解得:S9=53kN S10=87.5kN取G点:Fx=0 S12cos45-S10=0Fy=0 S12sin45+ S11=0解得:S9=-87.5kN S10=123.7kN取H点:Fx=0 S13-S8-S9sin45=0S13=-87.5kN4-34解:取整体:MA=0 -FRA6a+G(5a+4a+3a+2a+a)=0 FRA=2.5G Fy=0 FRA +FRB +5G=0 FRB=2.5G取A点:Fx=0 S1+S2cos45=0Fy=0 S2sin45+FRA=0解得:S1=2.5G S2=-3.54G取C点:Fx=0 S4-S1=0 S4=2.5GFy=0 S3-G=0 S3=G截面-,取左半部分Fy=0 S5sin45+FRA-3G=0 S5=0.707GMD=0 -FRA4a+G3a+G2a+Ga+S6a=0S6=4G第五章习题5-1 重为W=100N,与水平面间的摩擦因数f=0.3,(a)问当水平力P=10N时,物体受多大的摩擦力,(b)当P=30N时,物体受多大的摩擦力?(c)当P=50N时,物体受多大的摩擦力?5-
限制150内