正弦定理(第一课时)教学设计(共9页).doc





《正弦定理(第一课时)教学设计(共9页).doc》由会员分享,可在线阅读,更多相关《正弦定理(第一课时)教学设计(共9页).doc(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上正弦定理(第一课时)教学设计 点明课题本节课是普通高中课程标准实验教科书必修5第一章解三角形中的1.1正弦定理和余弦定理中的1.1.1正弦定理的内容,该节包括正弦定理的发现、证明和应用,我把这节内容分为2课时,现在我要说的是正弦定理的第一课时,主要包括正弦定理的发现、证明和简单的应用。下面我从三个方面来说说对这节课的分析和设计:一、教学背景分析二、教学展开分析三、教学结果分析一、教学背景分析1.教材地位分析正弦定理是普通高中课程标准实验教科书必修5中第一章解三角形的学习内容,比较系统地研究了解三角形这个课题。正弦定理紧跟必修4(包括三角函数与平面向量)之后,可以启发学
2、生联想所学知识,运用平面向量的数量积连同三角形、三角函数的其他知识作为工具,推导出正弦定理。正弦定理是求解任意三角形的基础,又是学生了解向量的工具性和知识间的相互联系的的开端,对进一步学习任意三角形的求解、体会事物是相互联系的辨证思想均起着举足轻重的作用。通过本节课学习,培养学生“用数学”的意识和自主、合作、探究能力。2.学生现实分析(1)学生在初中已学过有关直角三角形的一些知识:勾股定理: 三角函数式,如:(2)学生在初中已学过有关任意三角形的一些知识: 大边对大角,小边对小角 两边之和大于第三边,两边之差小于第三边(3)学生在高中已学过必修4(包括三角函数与平面向量)(4)学生已具备初步的
3、数学建模能力,会从简单的实际问题中抽象出数学模型3.教学目标分析知识目标:(1)正弦定理的发现(2)证明正弦定理的几何法和向量法(3)正弦定理的简单应用能力目标:(1)培养学生观察、分析问题、应用所学知识解决实际问题的能力(2)通过向量把三角形的边长和三角函数建立起关系,在解决问题的过程中培养学生的联想能力、综合应用知识的能力情感目标:(1)设置情景,培养学生的独立探究意识,激发学生学习兴趣(2)鼓励学生探索规律、发现规律、解决实际问题(3)通过共同剖析、探讨问题,推进师生合作意识,加强相互评价与自我反思二、教学展开分析1.教学重点与难点分析教学重点是发现正弦定理、用几何法和向量法证明正弦定理
4、。正弦定理是三角形边角关系中最常见、最重要的两个定理之一,它准确反映了三角形中各边与它所对角的正弦的关系,对于它的形式、内容、证明方法和应用必须引起足够的重视。正弦定理要求学生综合运用正弦定理和内角和定理等众多基础知识解决几何问题和实际应用问题,这些知识的掌握,有助于培养分析问题和解决问题能力,所以一向为数学教育所重视。教学难点是用向量法证明正弦定理。虽然学生刚学过必修4中的平面向量的知识,但是要利用向量推导正弦定理,有一定的困难。突破此难点的关键是引导学生通过向量的数量积把三角形的边长和内角的三角函数联系起来。用平面向量的数量积方法证明这个定理,使学生巩固向量知识,突出了向量的工具性,是向量
5、知识应用的范例。2.教学策略与学法指导教学策略:本节课采用“发现学习”的模式,即由“结合实例提出问题观察特例提出猜想数学实验深入探究证明猜想得出定理运用定理解决问题”五个环节组成的“发现学习”模式,在教学中贯彻“启发性”原则,通过提问不断启发学生,引导学生自主探索与思考;并贯彻“以学定教”原则,即根据教学中的实际情况及时地调整教学方案。学法指导:教师平等地参与学生的自主探究活动,引导学生全员参与、全过程参与。通过启发、调整、激励来体现主导作用,根据学生的认知情况和情感发展来调整整个学习活动的梯度和层次,保证学生的认知水平和情感体验分层次向前推进。3.教学媒体选择与应用使用多媒体平台(包括电脑和
6、投影仪)辅助教学,让学生自己动手进行实验,借助多媒体快捷、形象、生动的辅助作用,既突出了知识的产生过程,遵循了学生的认知规律,让学生形成体验性认识,体会成功的愉悦,同时又可以增加课堂的趣味性,提高学习数学的兴趣,树立学好数学的信心。4.教学过程实施本节课采用“发现学习”的模式,因而教学过程实施分为五个部分:(1)结合实例提出问题(2)观察特例提出猜想(3)数学实验深入探究(4)证明猜想得出定理(5)运用定理解决问题(1)结合实例提出问题教学过程设计意图设置问题情境从“海湾大桥”这一学生喜闻乐见的重大实际工程提出问题,营造宽松、和谐、主动积极的探究氛围,激发学习兴趣.学生自主探讨可能很多学生会这
7、样考虑:选择某地C点,构造RtABC,测出C与AC的长,即可算出AB的长挖掘学生的原有认知,在原有知识和学习目标之间搭建平台.教师提问如果构造出RtABC时,发现点C在海上(或者由于地形、建筑等因素),无法测出C与AC的长,那怎么办?实际问题要考虑实际情况,锻炼学生的发散思维,培养学生解决实际问题的能力.师生共同探讨DCAB不能构造出Rt,那只能构造一般的三角形ABC这时,我们能够测出哪些量?学生分析讨论后得出:可以测出A、C与AC的长测出这些量后,怎样求出AB长?教师引导学生,将实际问题抽象为数学问题,再来求解可以作辅助线,构造Rt来求解:作BDAC于D点,在RtABD中,BD=ABsinB
8、AD= ABsinBAC,AD=ABcosBAD= ABcosBAC,在RtBCD中,BD=(AC+AD)tanC,即可求出AB通过师生互动、生生互动的教学活动过程,体现教师的主导作用,形成学生的体验性认识.教师提问教师指出,人们在实际中,如测量、航海、机械设计、几何、物理等方面,经常碰到有关三角形的问题,在解决这些问题时,如果每次都通过构造直角三角形来求解,显然有点麻烦!接着提问学生:在任意三角形中,各边、角之间是否存在某种数量关系呢?若有,那么我们就可以直接利用,快速求解。寻求解决问题的简便方法,符合人们的思维规律,同时也指出本节课的探究方向.(2)观察特例提出猜想教学过程设计意图师生共同
9、观察特例在RtABC中,各边、角之间存在何种数量关系?学生容易想到三角函数式子:(可能还有余弦、正切的式子)这三个式子中都含有哪个边长?学生马上看到,是c边,因为那么通过这三个式子,边长c有几种表示方法?CBAcab得到的这个等式,说明了在Rt中,各边、角之间存在什么关系?(各边和它所对角的正弦的比相等)此关系式能不能推广到任意三角形?以旧引新, 打破学生原有认知结构的平衡状态, 刺激学生认知结构根据问题情境进行自我组织, 促进认知发展. 从直角三角形边角关系切入, 符合从特殊到一般的思维过程.提出猜想猜想:在任意的ABC中, 各边和它所对角的正弦的比相等, 即:鼓励学生模拟数学家的思维方式和
10、思维过程, 大胆拓广, 主动投入数学发现过程,发展创造性思维能力.(3)数学实验深入探究教学过程设计意图学生自己进行数学实验让学生用几何画板进行数学实验:改变三角形的某个顶点的位置(即改变了三角形的形状),观察表格中的数据的数值大小变化情况.观察发现:在拖动三角形的某个顶点的过程中,表格中的数据的数值大小也随着变化,但是它们始终保持相等.给学生探索的空间,使学生真正感觉到自己在“做数学”,激起学生的好奇心和探究欲望, 调动学生自主参与数学活动,使学生体会到数学系统演绎性和实验归纳性的两个侧面.归纳总结通过实验后,猜想成立,即有下面的结论:在任意的ABC中, 各边和它所对角的正弦的比相等, 即:
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 正弦 定理 第一 课时 教学 设计

限制150内