二次函数的实际应用(拱桥问题)教师.docx
《二次函数的实际应用(拱桥问题)教师.docx》由会员分享,可在线阅读,更多相关《二次函数的实际应用(拱桥问题)教师.docx(4页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上二次函数中抛物线形与拱桥问题1 有一座抛物线形拱桥,正常水位时,桥下水面宽度为20m,拱顶距离水面4m(1)在如图所示的直角坐标系中,求出该抛物线的表达式;(2)在正常水位的基础上,当水位上升h(m)时,桥下水面的宽度为d(m),求出将d表示为h的函数表达式;(3)设正常水位时桥下的水深为2m,为保证过往船只顺利航行,桥下水面宽度不得小于18m,求水深超过多少米时就会影响过往船只在桥下的顺利航行解:(1)设抛物线的解析式为yax2,且过点(10,4) 故 (2)设水位上升h m时,水面与抛物线交于点() 则 (3)当d18时, 当水深超过2.76m时会影响过往船只在桥
2、下顺利航行。2、如图,有一座抛物线形的拱桥,桥下面处在目前的水位时,水面宽AB=10m,如果水位上升2m,就将达到警戒线CD,这时水面的宽为8m.若洪水到来,水位以每小时0.1m速度上升,经过多少小时会达到拱顶?解: 以AB所在的直线为x轴,AB中点为原点,建立直角坐标系,则抛物线的顶点E在y轴上,且B 、D两点的坐标分别为(5,0)、(4,2) 设抛物线为y=ax2+k. 由B、D两点在抛物线上,有 解这个方程组,得 所以, 顶点的坐标为(0,) 则OE= 0.1=(h) 所以,若洪水到来,水位以每小时0.1m速度上升,经过小时会达到拱顶. 3、如图4,有一座抛物线形拱桥,抛物线可用y=表示
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 二次 函数 实际 应用 拱桥 问题 教师
限制150内