惩罚函数的外点法(共9页).doc





《惩罚函数的外点法(共9页).doc》由会员分享,可在线阅读,更多相关《惩罚函数的外点法(共9页).doc(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上2013-2014(1)专业课程实践论文惩罚函数的外点法一、算法理论基本原理 设原目标函数为,在不等式约束条件下外点惩罚函数法求极小,外点法常采用如下形式的泛函: (1)由此,外点法所构造的相应的惩罚函数形式为: (2)式中,惩罚因子是一个递增的正值数列,即: 惩罚项中: (3)由此可见,当迭代点位于可行域内满足约束条件时,惩罚项为零,这时不管取多大,新目标函数就是原目标函数,亦即满足约束条件时不受“惩罚”,此时求式(2)的无约束极小,等价于求原目标函数在已满足全部约束条件下的极小;而当点位于可行域外不满足约束条件时,惩罚项为正值,惩罚函数的值较原目标函数的值增大了,
2、这就构成对不满足约束条件的一种“惩罚”。由式(2)可知,每一次对罚函数求无约束的极值,其结果将随该次所给定的罚因子值而异。在可行域外,离约束边界越近的地方,约束函数的值越大,的值也就越小,惩罚项的作用也就越弱,随着罚因子逐次调整增大,有增大惩罚项的趋势,但一般说来泛函值下降得更快一些。此时尽管但泛函值亦趋于零,满足式(3)。最后当,泛函值和惩罚项值均趋近于零。外点法在寻优过程中,随着罚因子的逐次调整增大,即取,所得的最优点序列可以看作是以为参数的一条轨迹,当时,最优点点列从可行域的外部一步一步地沿着这条轨迹接近可行域,所得的最优点列逼近原问题的约束最优点。这样,将原约束最优化问题转换成为序列无
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 惩罚 函数 外点法

限制150内