高考数学导数中的零点问题解决方法(共5页).docx
《高考数学导数中的零点问题解决方法(共5页).docx》由会员分享,可在线阅读,更多相关《高考数学导数中的零点问题解决方法(共5页).docx(5页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上导数中的零点问题解决方法解决零点问题,需要采用数形结合思想,根据函数的图像或者趋势图像找出符合题意的条件即可,因此用导数判断出单调性作出函数图像或趋势图像至关重要。一、能直接分离参数的零点题目此类问题较为简单,分离之后函数无参数,则可作出函数的准确图像,然后上下移动参数的值,看直线与函数交点个数即可。例1.已知函数,若关于的方程只有一个实数根,求的值。解析:,令,令,则当时,单调递增;当时,单调递减,注意这里的单调性不是硬解出来的,因为你会发现的式子很复杂,但是如果把当成两个函数的和,即,此时的单调性和极值点均相同,因此可以整体判断出的单调性和极值点。所以(注意:有一
2、个根转化为图像只有一个交点即可)二、不能直接分离参数的零点问题(包括零点个数问题)这里需要注意几个转化,以三次函数为例,若三次函数有三个不同的零点,则函数必定有两个极值点,且极大值和极小值之积为负数,例如在区间上有零点,此时并不能确定零点的个数,只能说明至少有一个零点,若函数在区间上单调,只需要用零点存在性定理即可,但是若函数在区间上不单调,则意味着在区间上存在极值点。在解决此类问题时常用的知识是零点存在定理和极限的相关知识,但必不可少的是求出函数的趋势图像,然后根据趋势图像找符合零点问题的条件即可,这里需要说明一下,参数影响零点的个数问题主要有两个方向,一是参数影响单调性和单调区间的个数,二
3、是参数影响函数的极值或最值,而通过这两个方向就可以影响函数的趋势图像,进而影响零点的个数,因此分类讨论思想在此类问题中必不可少。例2.已知函数,若存在唯一的零点,且,则的取值范围是解析:当时,有两个零点,不符合题意当时,若,则若,则,此时函数在上单增,此时在上存在零点,不符合题意。当时,若,则,若,则或此时要保证函数存在唯一的正零点,则,解得注意:如果不是的大题没必要分类讨论,做出符合题意的图像反推即可例3.已知函数在区间上有两个不同零点,求实数的取值范围。解析:,可知函数在上递减,在上递增,要保证函数在上有两个不同的零点,根据函数的趋势图像可得必须满足例4.已知函数(1)讨论的单调性;(2)
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高考 数学 导数 中的 零点 问题解决 方法
限制150内