人教版八年级数学第十二章全等三角形全章导学案(可用).doc
《人教版八年级数学第十二章全等三角形全章导学案(可用).doc》由会员分享,可在线阅读,更多相关《人教版八年级数学第十二章全等三角形全章导学案(可用).doc(20页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上12.1全等三角形 01【学习目标】1、了解全等形、全等三角形的概念,明确全等三角形对应边、对应角相等。2、在列举生活中常见的的全等图形的过程中,学会判断对应边、对应角的方法。3、积极投入,激情展示,做最佳自己。教学重点:全等三角形的性质及寻找全等三角形的对应边、对应角。教学难点:寻找全等三角形的对应边、对应角。【学习过程】一、自主学习1、全等形。回忆:举出现实生活中能够完全重合的图形的例子? 同一张底片洗出的同大小照片是能够完全重合的(如图); 能够完全重合的两个图形叫做 . (1) 一个图形经过平移,翻转,旋转后,位置变化了,但 和 都没有改变,即平移,翻转,旋转
2、前后的图形 。(2) 如果两个图形全等,它们的形状大小一定都相同吗?全等形的特征是 和 2、全等三角形。能够完全重合的两个三角形叫做 (如下图)。“全等”用符号“”来表示,读作“全等于”,如上图记作ABCA1B1C1 叫对应顶点,AA1,BB1,CC1 叫对应边,ABA1B1,AC , B1C1 叫对应角,AA1,B ,C 注意:书写全等式时要求把对应顶点字母放在 的位置上。3、全等三角形的性质。 全等三角形的 相等, 相等。用符号表示为ABCA1B1C1 AB=A1B1, BC=B1C1, AC=A1C1(全等三角形的 ) A= A1, B= B1 , C= C1(全等三角形的 )二、合作探
3、究CDABE1、在找全等三角形的对应元素时一般有什么?ABCDABCD PABDC有公共边的,公共边是对应边;有公共角的,公共角是对应角;有对顶角的,对顶角是对应角.一对最长的边是对应边,一对最短的边是对应边;一对最大的角是对应角,一对最小的角是对应角。BDACF根据上面的提示,你能总结寻找对应边、角的规律吗?2、如图:ABCDBF,找出图中的对应边,对应角.三、学以致用1、如图ABC ADE,若D=B, C= AED,则DAE= ; DAB= 。2、如图,ABCAED,AB是ABC的最大边,AE是AED的最大边, BAC 与 EAD对应角,且BAC=25, B=35,AB=3cm,BC=1c
4、m,求出E, ADE的度数和线段DE,AE 的长度。BAD与EAC相等吗?为什么?四、当堂检测1、全等用符号 表示,读作: 。2、若 BCE CBF,则CBE= , BEC= ,BE= , CE= .3、判断题 1)全等三角形的对应边相等,对应角相等。( )2)全等三角形的周长相等,面积也相等。 ( ) 3)面积相等的三角形是全等三角形。 ( ) 4)周长相等的三角形是全等三角形。 ( )4、如图ABD EBC,AB=3cm,BC=5cm,求DE的长五、我的收获与反思六、作业:P33 习题12.1 第1、2题(课本)第3、4、5、6题(作业本)12.2三角形全等的判定(SSS) 02【学习目标
5、】1、三角形全等的“边边边”的条件,了解三角形的稳定性2、经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程3、积极投入,激情展示,做最佳自己教学重点:三角形全等的条件教学难点:寻求三角形全等的条件【学习过程】一、自主学习1、复习:什么是全等三角形?全等三角形有些什么性质?如图,ABCABC那么相等的边是: 相等的角是: 2、讨论三角形全等的条件(动手画一画并回答下列问题)(1)只给一个条件:一组对应边相等(或一组对应角相等),画出的两个三角形一定全等吗?(2)给出两个条件画三角形,有_种情形。按下面给出的两个条件,画出的两个三角形一定全等吗?一组对应边相等和一组对应角相等 两
6、组对应边相等两组对应角相等(3)、给出三个条件画三角形,有_种情形。按下面给出三个条件,画出的两个三角形一定全等吗?三组对应角相等三组对应边相等已知一个三角形的三条边长分别为6cm、8cm、10cm你能画出这个三角形吗?把你画的三角形剪下与同伴画的三角形进行比较,它们全等吗?a作图方法:b以小组为单位,把剪下的三角形重叠在一起,发现 ,这说明这些三角形都是 的c归纳:三边对应相等的两个三角形 ,简写为“ ”或“ ”d、用数学语言表述:在ABC和中, ABC 用上面的规律可以判断两个三角形 判断 ,叫做证明三角形全等所以“SSS”是证明三角形全等的一个依据3、你能解释三角形为什么具有稳定性吗?二
7、、合作探究1、例如图,ABC是一个钢架,AB=AC,AD是连结点A与BC中点D的支架求证:ABDACD温馨提示:证明的书写步骤:准备条件:证全等时要用的间接条件要先证好;三角形全等书写三步骤:A、写出在哪两个三角形中,B、摆出三个条件用大括号括起来,C、写出全等结论。2、尺规作图。已知:AOB. 求作:DEF,使DEF=AOB三、学以致用1、如图,AB=AE,AC=AD,BD=CE,求证:ABC ADE。2、已知:如图,AD=BC,AC=BD. 求证:OCD=ODC四、当堂检测下列说法中,错误的有( )个(1)周长相等的两个三角形全等。(2)周长相等的两个等边三角形全等。(3)有三个角对应相等
8、的两个三角形全等。(4)有三边对应相等的两个三角形全等A、1 B、2 C、3 D、4五、小结提高六、作业:1、P37 练习第1、2题(练习本) 2、练习册12.2三角形全等的判定(SAS) 03【学习目标】1、掌握三角形全等的“SS”条件,能运用“SS”证明简单的三角形全等问题2经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程教学重点:三角形全等的条件教学难点:寻求三角形全等的条件【学习过程】一、自主学习1、复习思考(1)怎样的两个三角形是全等三角形?全等三角形的性质是什么?三角形全等的判定(一)的内容是什么?(2)上节课我们知道满足三个条件画两个三角形有4种情形,三个角对应
9、相等;三条边对应相等;两角和一边对应相等;两边和一角对应相等;前两种情况已经研究了,今天我们来研究第三种两边和一角的情况,这种情况又要分两边和它们的夹角,两边及其一边的对角两种情况。2、探究一:两边和它们的夹角对应相等的两个三角形是否全等? (1)动手试一试已知:ABC 求作:,使,(2) 把剪下来放到ABC上,观察与ABC是否能够完全重合?(3)归纳;由上面的画图和实验可以得出全等三角形判定(二):两边和它们的夹角对应相等的两个三角形 (可以简写成“ ”或“ ”)(4)用数学语言表述全等三角形判定(二)在ABC和中, ABC 3、探究二:两边及其一边的对角对应相等的两个三角形是否全等?通过画
10、图或实验可以得出: 二、合作探究例2 如图,AC=BD,1= 2,求证:BC=AD.变式1: 如图,AC=BD,BC=AD,求证:1= 2.变式2: 如图,AC=BD,BC=AD,求证:C=D变式3: 如图,AC=BD,BC=AD,求证:A=BOACDB三、学以致用1、课本第39页第2题2、如图,已知OA=OB,应填什么条件就得到AOCBOD(允许添加一个条件)四、当堂检测如图,ADBC,D为BC的中点,那么结论正确的有 A、ABDACD B、B=C C、AD平分BAC D、ABC是等边三角形五、课堂小结1、两边和它们的夹角对应相等的两个三角形全等。简写成“ ”或“ ”2、到目前为止,我们一共
11、探索出判定三角形全等的2种方法,它们分别是: 和 七、作业:1、P39 练习 第1题(练习本)2、P43 习题12.2 第2、9、10题3、练习册12.2三角形全等的判定(ASA、AAS) 04【学习目标】1、掌握三角形全等的“角边角”“角角边”条件能运用全等三角形的条件,解决简单的推理证明问题2经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程3、积极投入,激情展示,体验成功的快乐。教学重点:已知两角一边的三角形全等探究教学难点:灵活运用三角形全等条件证明【学习过程】一、自主学习1、复习思考(1)到目前为止,可以作为判别两三角形全等的方法有几种?各是什么?(2)在三角形中,已
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版 八年 级数 第十二 全等 三角形 全章导学案 可用
限制150内