求函数值域练习附答案(共10页).docx
《求函数值域练习附答案(共10页).docx》由会员分享,可在线阅读,更多相关《求函数值域练习附答案(共10页).docx(10页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上班级:一对一所授年级+科目: 高一数学授课教师: 课次:第 次学生: 上课时间:教学目标熟练掌握求函数值域的方法教学重难点求函数值域的方法求函数值域快速练习一选择题1(2006陕西)函数f(x)=(xR)的值域是()A(0,1)B(0,1C0,1)D0,1考点:函数的值域。 分析:本题为一道基础题,只要注意利用x2的范围就可以解答:解:函数f(x)=(xR),1+x21,所以原函数的值域是(0,1,点评:注意利用x20(xR)2函数y=(x2,6)的值域是(D)ARB(,0)(0,+)CD考点:函数的值域。 分析:由函数的定义域可先求x1的范围,进一步求解函数的值域解
2、答:解:2x6则1x15,点评:本题主要考查了直接法求解函数的值域,属于基础试题3f(x)的定义域为2,3,值域是a,b,则y=f(x+4)的值域是()A2,7B6,1Ca,bDa+4,b+4考点:函数的值域。 分析:因为从f(x)到y=f(x+4),其函数图象只是向左平移了4个单位;利用左右平移的函数只是自变量发生了变化,而函数值不变,可以直接求出答案解答:解:因为从f(x)到y=f(x+4),其函数图象只是向左平移了4个单位,自变量发生了变化,而函数值不变,所以y=f(x+4)的值域仍为a,b点评:本题借助于图象平移来研究函数的值域函数的平移变化分为两种:一:左右平移的函数只是自变量发生了
3、变化,而函数值不变; 二:上下平移的函数只是函数值发生了变化,而自变量不变4函数y=的值域是(B)A1,1B(1,1C1,1)D(1,1)考点:函数的值域。811365 分析:进行变量分离y=1,若令t=1+x2则可变形为y=(t1)利用反比例函数图象求出函数的值域解答:解法一:y=11+x21,021y1解法二:由y=,得x2=x20,0,解得1y1点评:此类分式函数的值域通常采用逆求法、分离变量法,应注意理解并加以运用解法三:令x=tan(),则y=cos22,1cos21,即1y15在区间(1,+)上不是增函数的是(C )Ay=2x1BCy=2x26xDy=2x22x考点:函数单调性的判
4、断与证明。 分析:由于函数y=2x1在R上是增函数,故排除A,由在区间(1,+)上是增函数,故排除B利用二次函数的图象特征和性质可得C满足条件,应排除D解答:解:由于函数y=2x1在R上是增函数,故排除A由于函数 在区间(1,+)上是增函数,故 在区间(1,+)上是增函数,故排除B由于二次函数y=2x26x的对称轴为x=,开口向上,故函数在,+)上是增函数,在(,上是减函数,故它在区间(1,+)上不是增函数,故满足条件由于二次函数y=2x22x的对称轴为x=,故函数在,+)上是增函数,在(,上是减函数,故它在区间(1,+)上是增函数,故排除D点评:二填空本题主要考查函数的单调性的判断和证明,属
5、于基础题6函数的值域为(,1分析:先确定函数的定义域,再考查函数在定义域内的单调性,根据函数的单调性来确定函数的值域解答:解:函数 的定义域是(,1,且在此定义域内是减函数,x=1时,函数有最大值为1,x时,函数值y,函数 的值域是(,1点评:先利用偶次根式的被开方数大于或等于0求出函数的定义域,再判断函数的单调性,由函数的单调性确定函数的值域7函数的值域是(,1)(1,+),的值域是(0,5分析:(1)把原函数化为y=1,根据反比例函数的性质即可求解;(2)先把函数化为:2yx24yx+3y5=0,根据判别式0即可得出函数的值域解答:解:(1)函数=1,函数的值域为(,1)(1,+);(2)
6、原式可化为:2yx24yx+3y5=0,=16y28y(3y5)0,y(y5)0,0y5,又y=0不可能取到故答案为:(0,5点评:本题考查了函数的值域,属于基础题,关键是掌握函数值域的两种不同求法8求函数y=x+的值域,+)考点:函数的值域。 专题:计算题;转化思想。分析:先对根式整体换元(注意求新变量的取值范围),把原问题转化为一个二次函数在闭区间上求值域的问题即可解答:解:令t=,(t0),则x=,问题转化为求函数f(t)=在t0上的值域问题,因为t0时,函数f(t)有最小值f(0)=无最大值,故其值域为,+)即原函数的值域为,+)点评:本题主要考查用换元法求值域以及二次函数在闭区间上求
7、值域问题换元法求值域适合于函数解析式中带根式且根式内外均为一次形式的题目9函数f(x)=x+|x2|的值域是2,+)分析:根据函数的解析式,去绝对值符号,根据函数的单调性求得函数的值域解答:解:因为当x(,2时,f(x)=2;当x(2,+)时,f(x)=2x22,故f(x)的值域是2,+)点评:本题考查函数的值域,去绝对值符号是解题的关键,属基础题10已知函数,则函数f(x)的值域为(,2分析:根据函数解析式的形式:采取换元法,令t=,t0,转化为二次函数f(t)=2tt2+1在0,+)上求函数的值域,利用配方法即可求得结果解答:解:令t=,t0,则x=t21,f(t)=2tt2+1=(t1)
8、2+2,t0,f(x)2,函数f(x)的值域为(,2点评:本题考查利用换元法求函数的值域,体现了转化的思想方法,同时考查二次函数在定区间上的最值问题,注意换元后引进新变量的范围,是易错点,属基础题11函数的值域f(x)=2x3+的值域是(,4分析:令=t,将函数转化成关于t的二次函数求解解答:解:令=t,t0,则 x=,y=,当且仅当t=1时取等号故所求函数的值域为 (,4,点评:通过换元将原函数转化为某个变量的二次函数,利用二次函数的最值,确定原函数的值域换元法是一种重要的数学解题方法,掌握它的关键在于通过观察、联想,发现与构造出变换式(或新元换旧式、或新式换旧元、或新式换旧式)12函数的值
9、域是(,1分析:已知f(x)的定义域,利用导数判断函数f(x)的单调性,然后再求其值域;解答:解:函数,f(x)=,x2,f(x)0,f(x)为减函数;f(x)f(2)=1,函数f(x)的值域为(,1,故答案为(,1点评:此题考查函数的值域,利用导数先判断函数的单调性,再求值域,是一种新的方法,同学们要掌握13函数的值域:y=为 0,2分析:设=x26x5,欲求原函数的值域,只须考虑的取值范围即可,根据二次函数的图象与性质即可求得的取值范围,从而问题解决解答:解析:设=x26x5(0),则原函数可化为y=又=x26x5=(x+3)2+44,04,故0,2,y=的值域为0,2故答案为:0,2点评
10、:本题以二次函数为载体考查根式函数的值域,属于求二次函数的最值问题,属于基本题14函数y=x22x的定义域为0,1,2,3,那么其值域为1,0,3分析:根据所给的函数的解析式和定义域,做出当自变量取定义域中的不同值时的对应的值域中的结果,写出值域解答:解:函数y=x22x的定义域为0,1,2,3,当x=0时,y=0;当x=1时,y=1;当x=2时,y=0;当x=3时,y=3综上可知值域对应的集合是1,0,3故答案为:1,0,3点评:本题考查函数的值域,本题解题的关键是求出定义域对应的函数值,做出值域对应的集合,本题是一个基础题15下列函数中在(,0)上单调递减的;y=1x2;y=x2+x;分析
11、:对于函数在(,1)上单调递增,可判定是否符合题意;对于y=1x2在(,0)上单调递增,故不符合题意;对于根据开口向上与对称轴为x=,可判定单调性;对于根据定义域为(,1),以及复合函数的单调性可知是否正确解答:解:=1,在(,1)上单调递增,故不符合题意;y=1x2在(,0)上单调递增,故不符合题意;y=x2+x开口向上,对称轴为x=,在(,)上单调递减,(,+)上单调递增,故不符合题意;,定义域为(,1),在(,1)上单调递减,故正确故答案为:点评:本题主要考查了二次函数、分式函数、根式函数单调性的判断,属于基础题16已知二次函数f(x)=2x24x+3,若f(x)在区间2a,a+1上不单
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 函数 值域 练习 答案 10
限制150内