等差数列的概念(共5页).doc
《等差数列的概念(共5页).doc》由会员分享,可在线阅读,更多相关《等差数列的概念(共5页).doc(5页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上6.2.1 等差数列的概念【教学目标】1. 理解等差数列的概念,掌握等差数列的通项公式;掌握等差中项的概念2. 逐步灵活应用等差数列的概念和通项公式解决问题3. 通过教学,培养学生的观察、分析、归纳、推理的能力,渗透由特殊到一般的思想【教学重点】等差数列的概念及其通项公式【教学难点】等差数列通项公式的灵活运用【教学方法】本节课主要采用自主探究式教学方法充分利用现实情景,尽可能地增加教学过程的趣味性、实践性在教师的启发指导下,强调学生的主动参与,让学生自己去分析、探索,在探索过程中研究和领悟得出的结论,从而达到使学生既获得知识又发展智能的目的【教学过程】环节教学内容师生
2、互动设计意图复习导入 复习数列的定义,通项公式,递推公式教师出示提出问题学生回答 巩固前学为新课铺垫新课探究一新课 探 究 二新课新课新课 (1)第23到第29届奥运会举行的年份依次为1984,1988,1992,1996,2000,2004,2008(2)已知数列an ,其中 a1 =15, an = an-1 2,n2, 写出这个数列的前六项。 15 13 11 9 7 5 (3)所有正偶数排成一列组成的数列 2, 4, 6, 8, 10(4)无穷个1排成一列组成的数列 1, 1, 1, 1, 1, 1等差数列的定义一般地,如果一个数列从第二项起,每一项与它前一项的差等于同一个常数,这个数
3、列就叫做等差数列,这个常数就叫做等差数列的公差(常用字母“d”表示) 练习一抢答:下列数列是否为等差数列?1,2,4,6,8,10,12,;0,1,2,3,4,5,6,;3,3,3,3,3,3,3,;2,4,7,11,16,;8,6,4,0,2,4,;3,0,3,6,9,注意:求公差d一定要用后项减前项,而不能用前项减后项2常数列特别地,数列3,3,3,3,3,3,3,也是等差数列,它的公差为0公差为0的数列叫做常数列3等差数列的通项公式首项是a1,公差是d的等差数列an的通项公式可以表示为ana1(n1)d4通项公式的应用根据这个通项公式,只要已知首项a1和公差d,便可求得等差数列的任意项a
4、n事实上,等差数列的通项公式中共有四个变量,知道其中三个,便可求出第四个例1 求等差数列8,5,2,的通项公式和第20项解 因为a1= 8,d = 58=3,所以这个数列的通项公式是an = 8+(n-1)(-3),即an = 3n + 11所以a20 = 320 + 11 = -49.例2 等差数列5,9,13,的第多少项是401?解 因为a1= 5,而且d = 9(5)=4,an = 401,所以 401= 5+ (n1)(4)解得 n=100即这个数列的第100项是401练习二(1)求等差数列3,7,11,的第4,7,10项(2)求等差数列10,8,6,的第20项练习三 在等差数列an中
5、:(1)d = ,a7 = 8,求a1;(2)a1 = 12,a6 = 27,求d例3 在3与7之间插入一个数A,使3,A,7成等差数列,求A解 因为3,A,7成等差数列,所以A3 = 7A,2A = 3 + 7解得A=55等差中项的定义一般地,如果a,A,b 成等差数列,那么A 叫做a与b的等差中项6等差中项公式如果A 是a与b的等差中项,则A = 这就表明,两个数的等差中项就是它们的算术平均数7一个结论在等差数列a1,a2,a3,an,中,a2 = ,a3 = , an = ,这就是说,在一个等差数列中,从第2项起,每一项(有穷等差数列的末项除外)都是它的前一项与后一项的等差中项练习四 求
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 等差数列 概念
限制150内