数字图像处理第五次作业.docx
《数字图像处理第五次作业.docx》由会员分享,可在线阅读,更多相关《数字图像处理第五次作业.docx(18页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上数字图像处理第五次作业摘要本次报告主要记录第五次作业中的各项任务完成情况。本次作业以Matlab 2013为平台,结合matlab函数编程实现对所给图像文件的相关处理:1. 频域低通滤波器:设计低通滤波器包括 butterworth and Gaussian (选择合适的半径,计算功率谱比),平滑测试图像test1和2;2.频域高通滤波器:设计高通滤波器包括butterworth and Gaussian,在频域增强边缘。选择半径和计算功率谱比,测试图像test3,4;3. 其他高通滤波器:拉普拉斯和Unmask,对测试图像test3,4滤波;4.比较并讨论空域低通高
2、通滤波(Project4)与频域低通和高通的关系。以上任务完成后均得到了预期的结果。1. 频域低通滤波器:设计低通滤波器包括 butterworth and Gaussian (选择合适的半径,计算功率谱比),平滑测试图像test1和2。(1)实验原理及方法低通滤波是要保留图像中的低频分量而除去高频分量。图像中的边缘和噪声都对应图像傅里叶频谱中的高频部分,所以低通滤波可以除去或消弱噪声的影响并模糊边缘轮廓。理想低通滤波器具有传递函数:Hu,v=1 Du,vD00 Du,vD0其中D0为制定的非负数,D(u,v)为点(u,v)到滤波器中心的距离。功率谱定义:Pfu,v=F(u,v)2 Pgu,v
3、=G(u,v)2Pfu,v为滤波前图像的功率谱,Pgu,v为滤波后图像的功率谱。滤波器的功率谱理解为:L=Pgu,vPfu,v1Butterworthn阶Butterworth低通滤波器(BLPF)的传递函数(截止频率距原点的距离为D0)定义如下:Hu,v=11+Du,v/D02n其中,Du,v=u-M22+v-N22。BLPF变换函数在通带与被滤除的频率之间没有明显的截断。对于有平滑传递函数的滤波器,定义一个截止频率的位置并使H(u,v)幅度降到其最大值的一部分。在上式中,当Du,v=D0时,H(u,v)=0.5(从最大值降到它的50%)。一阶的巴特沃斯滤波器没有振铃,在二阶中振铃通常很微小
4、,这是因为与理想低通滤波器相比,它的通带与阻带之间没有明显的跳跃,在高低频率间的过渡比较光滑。巴特沃斯低通滤波器的处理结果比理想滤波器的要好,但阶数增高时振铃便成为一个重要因素。本次实验中设计实现了二阶巴特沃斯滤波器。2Gaussian 二维高斯低通滤波器,其传递函数的形式为:Hu,v=e-D2(u,v)/22其中,Du,v=u-M22+v-N22。表示高斯曲线扩展的程度。使=D0,可以将滤波器表示为:Hu,v=e-D2(u,v)/2D02其中,D0是截止频率。当Du,v=D0时,滤波器下降到它最大值的0.607倍处。由于高斯低通滤波器的傅里叶反变换也是高斯的,所以得到的空间高斯滤波器将没有振
5、铃。(2)处理结果对test1,butterworth低通滤波 D0=25时,L = 0.9741对test1,butterworth低通滤波 D0=75时,L =0.9957 对test2,butterworth低通滤波 D0=25时,L = 0.9804对test2,butterworth低通滤波 D0=75时,L = 0.9916对test1,Gaussian 低通滤波 D0=25时,L =0.9657对test1,Gaussian 低通滤波 D0=75时,L =0.9925对test2,Gaussian 低通滤波 D0=25时,L =0.9754对test2,Gaussian 低通滤波
6、 D0=75时,L =0.9902 (3)结果分析1)对比每组图像处理结果中的原始图像和低通滤波后的图像,可以清晰看到低通滤波器的平滑效果(模糊效果)。2)当滤波器的半径不同时,对应的滤波效果也不同。半径越小,平滑效果越明显,但半径过小,会使得图像变得模糊不清:对于test1,2分别选取D0=25、75的二阶butterworth低通滤波器进行低通滤波。对比不同的D0值得到的结果知,随着截止频率D0的减小,滤波后的图像越来越模糊,滤波器功率谱越来越小,即滤波后包含的低频分量越来越少。对于test1,2分别选取D0=25、75的二阶Gaussian低通滤波器进行低通滤波。对比不同的D0值得到的结
7、果知,随着截止频率D0的减小,滤波后的图像越来越模糊,滤波器功率谱越来越小,即滤波后包含的低频分量越来越少。3)对比二阶butterworth低通滤波器和Gaussian低通滤波器的效果知,两种滤波器达到的基本效果是一致的,即平滑图像,滤除高频分量,保留低频分量。但两者在相同截止频率D0时,得到的滤波器功率谱却不同,主要原因是两个滤波器在过渡带处的差异。4)相同D0条件下,Gaussian低通滤波器的效果较好,更清晰,得到图像的细节更丰富。2. 频域高通滤波器:设计高通滤波器包括butterworth and Gaussian,在频域增强边缘。选择半径和计算功率谱比,测试图像test3,4。(
8、1)实验原理及方法高通滤波是要保留图像中的高频分量而除去低频分量。理想高通滤波器传递函数表示为:Hu,v=0 Du,vD01 Du,vD01Butterworthn阶Butterworth高通滤波器(BHPF)的传递函数(截止频率距原点的距离为D0)定义如下:Hu,v=11+D0/Du,v2n其中,Du,v=u-M22+v-N22。BHPF变换函数在通带与被滤除的频率之间没有明显的截断。对于有平滑传递函数的滤波器,定义一个截止频率的位置并使H(u,v)幅度降到其最大值的一部分。在上式中,当Du,v=D0时,H(u,v)=0.5(从最大值降到它的50%)。2Gaussian 二维高斯低通滤波器,
9、其传递函数的形式为:Hu,v=1-e-D2(u,v)/22其中,Du,v=u-M22+v-N22。表示高斯曲线扩展的程度。使=D0,可以将滤波器表示为:Hu,v=1-e-D2(u,v)/2D02其中,D0是截止频率。当Du,v=D0时,滤波器下降到它最大值的0.607倍处。由于高斯低通滤波器的傅里叶反变换也是高斯的,所以得到的空间高斯滤波器将没有振铃。(2)处理结果对test3,butterworth 高通滤波 D0=25时,L =0.0022对test3,butterworth 高通滤波 D0=75时,L =4.7629e-05对test4,butterworth 高通滤波 D0=25时,L
10、 =0.0071对test4,butterworth 高通滤波 D0=75时,L =7.3564e-04对test4,Gaussian 高通滤波 D0=25时,L = 0.0057对test4,Gaussian 高通滤波 D0=75时,L = 6.5073e-04 对test3,Gaussian 高通滤波 D0=25时,L =0.0019对test3,Gaussian 高通滤波 D0=75时,L =6.8038e-05(3)结果分析1)对比每组图像处理结果中的原始图像和高通滤波后的图像,可以清晰看到高通滤波器的边缘增强效果,对于低频分量的滤除和对于高频分量的保留作用及截断效果。 2) 当滤波器
11、的半径不同时,对应的滤波效果也不同。半径越小,边缘效果越明显。对于test3,4分别选取D0=25、75的二阶butterworth高通滤波器进行高通滤波。对比不同的D0值得到的结果知,随着截止频率D0的增加,滤波后的图像边缘应该越来越清晰,滤波器功率谱越来越小,即滤波后包含的高频分量越来越少。但当D0增大到一定程度时,边缘将不见,主要是因为滤除的能量过多,图像全部变成了黑色。对于test3,4分别选取D0=25、75的二阶Gaussian高通滤波器进行高通滤波。对比不同的D0值得到的结果知,随着截止频率D0的增加,滤波后的图像边缘应该越来越清晰,滤波器功率谱越来越小,即滤波后包含的高频分量越
12、来越少。但当D0增大到一定程度时,边缘将不见,主要是因为滤除的能量过多,图像全部变成了黑色。3)对比二阶butterworth高通滤波器和Gaussian高通滤波器的效果知,两种滤波器达到的基本效果是一致的,即增强图像边缘,滤除低频分量,保留高频分量。但两者在相同截止频率D0时,得到的滤波器功率谱却不同,主要原因是两个滤波器在过渡带处的差异。 4)一般图像中的大部分能量集中在低频分量里,对比高通滤波器和低通滤波器知,高通滤波器在滤波的时候会将很多低频分量滤除,导致图中边缘得到加强但光滑区域灰度减弱变暗甚至接近黑色。当D0增大到一定程度时,边缘将不见,整个图像变为黑色。为解决这个问题,可对频域里
13、的高通滤波器的转移函数加一个常数以将一些低频分量加回去,获得既保持光滑区域又改善边缘区域对比度的效果。这样得到的滤波器称为高频增强滤波器。3. 其他高通滤波器:拉普拉斯和Unmask,对测试图像test3,4滤波。(1)实验原理及方法1拉普拉斯频域的拉普拉斯算子可以有如下滤波器实现:Hu,v=-42(u2+v2)前提是Fu,v的原点在进行图像变换之前已通过执行运算f(x,y)(-1)x+y中心化了,使得变换中心(u,v)=(0,0)就是频率矩形的中点(M/2,N/2)。否则Hu,v=-42u-M22+v-N222Unmask钝化模板由下式给出:gmaxx,y=fx,y-fLP(x,y)与fLP
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数字图像 处理 第五 作业
限制150内