立体几何中二面角的求法(教师版).doc
《立体几何中二面角的求法(教师版).doc》由会员分享,可在线阅读,更多相关《立体几何中二面角的求法(教师版).doc(3页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上高二文科数学培优: 立体几何中二面角的求法编写:林洪兵2016-1-6一、定义法: 例1:如图1,设正方形ABCD-A1B1C1D!中,E为CC1中点,求截面A1BD和EBD所成二面角的度数。分析与解:本题可用定义法直接作出两截面A1BD、EBD所成二面角的平面角,设AC、BD交于O,连EO,A1O,由EB=ED,A1B=A1D即知EOBD,A1OBD,故EOA1为所求二面角的平面角。变式1:正方体ABCD-A1B1C1D1中,求二面角A-BD-C1的正切值为 .分析与略解:“小题”不必“大做”,由图1知所求二面角为二面角C-BD-C1的“补角”.教材中根本就没有“二
2、面角的补角”这个概念,但通过几何直观又很容易理解其意义,这就叫做直觉思维,在立体几何中必须发展这种重要的思维能力.易知COC1是二面角C-BD-C1的平面角,且tanCOC1=。将题目略作变化,二面角A1-BD-C1的余弦值为 .在图1中,A1OC1是二面角A1-BD-C1的平面角,设出正方体的棱长,用余弦定理易求得cosA1OC1=二、三垂线法这是最典型也是最常用的方法,当然此法仍扎“根”于二面角平面角的定义.A图3PBl此法最基本的一个模型为:如图3,设锐二面角,过面内一点P作PA于A,作ABl于B,连接PB,由三垂线定理得PBl,则PBA为二面角的平面角,故称此法为三垂线法.最重要的是在
3、“变形(形状改变)”和“变位(位置变化)”中能迅速作出所求二面角的平面角,再在该角所在的三角形(最好是直角三角形,如图3中的RtPAB)中求解.对于钝二面角也完全可以用这种方法,锐角的补角不就是钝角吗?例2 如图3,设三棱锥V-ABC中,VA底面ABC,ABBC,DE垂直平分VC,且分别交AC、VC于D、E,又VA=AB,VB=BC,求二面角E-BD-C的度数。分析与解 本题应用垂线法作出二面角的平面角,因VBC为等腰三角形,E为VC中点,故BEVC,又因DEVC,故VC平面BED,所以BDVC,又VA平面ABC,故VABD,从而BD平面VAC。图4B1AA1BlEF例3(2006年陕西试题)
4、如图4,平面平面,=l,A,B,点A在直线l上的射影为A1,点B在l的射影为B1,已知AB=2,AA1=1,BB1=,求:()略;()二面角A1ABB1的正弦值.分析与略解:所求二面角的棱为AB,不像图3的那样一看就明白的状态,但本质却是一样的,对本质的观察能力反映的是思维的深刻性.作A1EAB1于AB1于E,则可证A1E平面AB1B.过E作EFAB交AB于F,连接A1F,则得A1FAB,A1FE就是所求二面角的平面角.依次可求得AB1=B1B=,A1B=,A1E=,A1F=,则在RtA1EF中,sinA1FE=.三、垂面法:例3 如图6,设正方体ABCD-A1B1C1D1中,E、F分别是AB
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 立体几何 二面角 求法 教师版
限制150内