二项式定理(通项公式)(共6页).doc
《二项式定理(通项公式)(共6页).doc》由会员分享,可在线阅读,更多相关《二项式定理(通项公式)(共6页).doc(6页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上六、二项式定理一、指数函数运算知识点:1整数指数幂的概念 2运算性质: ,3注意 可看作 = 可看作 =4、 (a0,m,nN*,且n1) 例题:例1求值:.例2用分数指数幂的形式表示下列各式:1) (式中a0) 2) 3) 例3计算下列各式(式中字母都是正数) 例4计算下列各式: 例5化简:例6 已知x+x-1=3,求下列各式的值:二、二项式知识回顾1. 二项式定理,以上展开式共n+1项,其中叫做二项式系数,叫做二项展开式的通项.(请同学完成下列二项展开式), 式中分别令x=1和x=-1,则可以得到 ,即二项式系数和等于;偶数项二项式系数和等于奇数项二项式系数和,即
2、 式中令x=1则可以得到二项展开式的各项系数和.2. 二项式系数的性质(1)对称性:与首末两端等距离的两个二项式系数相等,即.(2)二项式系数增减性与最大值:当时,二项式系数是递增的;当时,二项式系数是递减的.当n是偶数时,中间一项取得最大值.当n是奇数时,中间两项和相等,且同时取得最大值.3.二项展开式的系数a0,a1,a2,a3,an 的性质:f(x)= a0+a1x+a2x2+a3x3+anxn a0+a1+a2+a3+an=f(1) a0-a1+a2-a3+(-1)nan=f(-1) a0+a2+a4+a6= a1+a3+a5+a7= 三、经典例题1、“展开式例1求的展开式;解:原式=
3、 =【练习1】求的展开式2.求展开式中的项例2.已知在的展开式中,第6项为常数项.(1) 求n; (2)求含的项的系数;(3)求展开式中所有的有理项.解:(1)通项为因为第6项为常数项,所以r=5时,有=0,即n=10.(2)令=2,得所以所求的系数为.(3)根据通项公式,由题意令,则,故可以取,即r可以取2,5,8.所以第3项,第6项,第9项为有理项,它们分别为.【练习2】若展开式中前三项系数成等差数列.求:(1)展开式中含的一次幂的项;(2)展开式中所有的有理项.3.二项展开式中的系数例3.已知的展开式的二项式系数和比的展开式的二项式系数和大992,求的展开式中:(1)二项式系数最大的项;
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 二项式 定理 公式
限制150内