us电力系统无功补偿器的研究本科毕业论文.doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《us电力系统无功补偿器的研究本科毕业论文.doc》由会员分享,可在线阅读,更多相关《us电力系统无功补偿器的研究本科毕业论文.doc(56页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、【精品文档】如有侵权,请联系网站删除,仅供学习与交流us电力系统无功补偿器的研究本科毕业论文绝密文件,核心资料,拒绝盗版, 支持正版,从我做起,一切是在为了方便大家!知识就是力量!摘要: 随着电力电子设备、交直流电弧炉和电气化铁道等非线性、冲击性负荷的大量接入电网,引起了电网无功功率不足、电压波动与闪变、三相供电不平衡以及电压电流波形畸变等其它一系列电能质量问题,并严重威胁着电力系统的安全稳定运行。首先,本文介绍了无功功率的基本概念,介绍了无功功率对电力系统的影响以及无功补偿的作用。并详尽的阐述了国内外无功补偿装置的历史以及现状。其次,本文详细分析了静止无功补偿器(SVC)和静止无功发生器(S
2、VG)的基本结构,控制方法和工作原理,以及各自优特点。并且阐述了它们的工作特性。再次,本文着重进行了对SVG型静止无功补偿器提高系统电压的理论研究。利用MATLAB/SIMULINK仿真软件对SVG工作方式及利用SVG动态提高系统电压的原理进行仿真研究。并对仿真结果进行了全面分析。最后,本文完成了一种无功补偿控制器的设计,该控制器在系统硬件上采用了由STC生产的STC10F08X单片机作为主控制器。采用ATT7022作为电能检测芯片,实现电网参数的精确采样与计算。在系统软件上采用晶闸管控制投切电容器,实现了电容器的快速,无弧的投切。采用全中文液晶显示界面实时显示系统运行状况。关键字: 无功补偿
3、,SVG,SVC,STC10F08XABSTRACTWith the power electronics equipment, AC and DC electric arc furnace and electric railways, and other non-linear, the impact of a large number of load connected to the grid, causing a power shortage of reactive power, voltage fluctuation and flicker, three-phase voltage and
4、 current power imbalances, and a series of waveform distortion and other power quality problems and a serious threat to security and stability of power systems.First, this paper introduces the basic concepts of reactive power, reactive power described the impact on the power system and the role of r
5、eactive power compensation. and a detailed exposition of the international history of reactive power compensation device and the status quo. Secondly, a detailed analysis of SVG and SVC basic structure, control methods and work principles, as well as the advantages and features of SVG. And describes
6、 the work of SVG features. Again, this paper focuses on SVG for Static Var Compensator improve the system voltage theory. Operations through the derivation of the formula to explain how to stabilize the system voltage . we use MATLAB/SIMULINK simulation software works and the use of SVG dynamic prin
7、ciple improve the system voltage simulation. And a comprehensive analysis of the simulation results. Finally,This paper completed a reactive power compensation controller hardware design .The controller on the system hardware used by the STC production STC1OF08X micro controller as master controller
8、. As ATT7022 a power test chip, accurate sampling and calculation of the implementation of network parameters. The thyristor controlled switched capacitor, capacitor, no arc switching on the system software. The Chinese LCD interface real-time display system operating conditions. Keywords: Reactive
9、compensation ; SVG ;SVC; STC10F08X第1章 绪论1.1 课题背景随着现代电力电子技术的飞速发展,大量大功率、非线性负荷的接入电网中,使得电网供电质量受到了严重的威胁。特别是一些像电弧炉、轧机、整流桥等非线性和冲击性负荷的大量使用是导致电能质量恶化的最主要来源,造成了一系列严重的影响。理想状态的电力供应要求频率为50Hz,电压幅值稳定在额定值的标准正弦波形。在三相电网供电系统中,A、B、C三相电压电流的幅值大小相等、相位差依次落后120度。但当电力用户的各种用电装置接入电力系统后,电力供应由理想的电力供应变成了电压电流偏离这种状态的非理想状态。电网中的许多用电负荷
10、都具有低功率因数、非线性、不平衡性和冲击性的特征,这些特征严重地危害着电网的电力供应,可表现在:电压值跌落或浪涌、各次谐波含量大、电压波形发生闪变、电压电流波形失真等,这样便出现了电能质量问题。实际电网中的电能质量问题主要表现如下:(1) 低功率因数,高电网损耗,高生产成本,低生产效率和较低设备使用安全性;(2) 无功负荷突变能直接引起电网供电电压降落与浪涌、电压波动和电压闪变,甚至能影响用电设备的正常使用与造成工农业生产的停产;(3) 非线性负荷的谐波电流造成电网电压畸变,它能导致如下结果:(a) 电力系统中继电保护及安全装置的误动作;(b) 电力电容器中通过的谐波及放大电网的高次谐波电流,
11、使电容器过电流、过电压或者过温过热,造成电容器鼓肚现象,减少电容器的使用寿命、甚至会烧毁;(c) 造成电力变压器铁芯饱和,增加了铁芯损耗,引起变压器发热减少其使用寿命;(d) 造成各种用电设备发热;(e) 加速各种用电设备绝缘的老化与击穿,带来经济上的损失;(4) 造成电网三相不对称,造成中心线过电流,引起中心线过温。静止型动态无功补偿装置即Static Var Compensator( SVC )是目前国内外解决这一系列问题普遍采用的方法,在无功负荷接入点处接入SVC装置后,无功负荷冲击得到抑制、高次谐波得到滤除、三相电网得到平衡、PCC点电压得到稳定和提高了电力系统的稳定性。在实际应用中,
12、将固定电容器和晶闸管控制电抗器 (Fixed Capacitor Thyristor Controlled Reactor 即FC+TCR )组合在一起,这种FC+TCR型SVC就可以在感性与容性的整个范围内进行无功调节。在FC的配合下,TCR通过在90180度的范围内改变晶闸管的触发角便能连续无级地调节SVC系统从电网吸收或者发出无功功率。实际上,这种通过调节晶闸管的触发延迟角来等效改变电抗器的感抗来实现无功动态补偿的,同时根据不同控制的要求,SVC可以实现补偿点的电压接近稳定在给定值(额定值),实现补偿点处的功率因数为给定值(一般要求0.95),实现补偿点处保留给定量的无功功率。SVC最重
13、要的性质是稳定电网端电压,快速响应无功的变化以及能进行分相补偿无功能力,平衡三相电网。在大型的具有冲击性、快速负荷变化、非对称、非线性负荷的动态无功补偿领域得到了广泛的应用。SVC装置有效地抑制和改善这些负荷所引起的电能质量问题,在解决电压畸变、电压波动和闪变问题上,具有着显著的作用。所以近年来,SVC在世界范围内其市场一直在迅猛地发展,目前已经在静止无功补偿领域特别是在高压输配电系统中占据了主导地位23。与SVC相比,静止无功发生器(SVG)调节速度更快且不需要大容量的电容电感等储能元件,谐波特性好,同容量占地面积小,在系统欠压条件下仍能容易实现给定的无容功率,可以等效成一个受控电流源,无功
14、调节能力强。正是由于这些优点,SVG在改善系统电压质量,提高电力系统稳定性方面具有SVC无法比拟的优点。尽管在理论上拥有这些无法比拟的优势,但是限于目前全控型电力电子器件的耐压电压、电流水平,要做到大容量的补偿装置,成本太高。因此,目前广泛应用于国内外输配电系统中的无功补偿装置依然是SVC,它在无功补偿、平衡电网电压、改善电压闪变与波动等方面具有优秀的性能,单位容量的价格低廉等特点,在下面各场合中得到了广泛的应用。(1) 电弧炉电弧炉是一种在电网中最为典型的非线性及非对称负荷,当电弧炉接入电网后,对电网造成了一系列负面的影响,而且在电弧炉的不同工作阶段对电网的影响也是不同的,其影响具体如下:导
15、致电网的严重三相不对称,产生负序电流和高次谐波(包括奇次与偶次谐波),严重时能导致电网电压发生畸变和产生电压的闪变,导致电网中功率因数偏低。根据电弧炉的负荷特点,采用普通的静态补偿装置是难以满足补偿的要求的。用户可以利用SVC具有快速响应速度的优越特性来解决上述问题,SVC系统通过检测电弧炉负载瞬时消耗的无功电流,并同时提供等值的无功电流来来满足其无功的消耗,从而避免了直接从电力系统中获取,实现了稳定电网PCC点处母线电压,增加冶炼装置有功功率的输出,提高冶炼效率和产品的合格率,并且能有效地减少电压闪变对别的电力用户的影响。SVC同时还具有的分相补偿负荷的能力,可以消除对电网造成的三相不平衡,
16、固定滤波支路在滤除特定高次谐波的同时向电力系统提供无功功率,这样可以提高了系统的功率因数。(2) 轧机等大型电机型的对称负载这些电机类负载的主要特点是:易引起电网电压降落和电压波动,尤其是在电机的启动与制动过程中消耗大量的无功功率,对电网造成比较大的冲击,甚至会使附近的电气设备不能正常工作。一般传动装置中会产生6K1次谐波,导致电网电压发生严重畸变。当安装SVC系统后,便可以有效地解决上述问题,稳定交流母线电压,提高系统功率因数。(3) 城市二级变电站在区域电网中,系统无功的补偿与功率因数的改善一般都采用分级投切电容器组的方式,由于电容器组只能有级地向系统提供无功功率,这就意味着:第一,此方式
17、不能随负载的微小变化来实现相应的快速精确无功补偿;第二,当电网轻载的时候,由于架空线之间的电容效应,使得电网母线末端电压升高,此时无法消耗电网中过剩的无功功率来降低母线末端的电压值;第三,当电网中功率因数很高的时候,易向电力系统倒送无功,抬高了系统母线电压,对电力设备安全及其系统稳定性造成了威胁,甚至可能会击穿电力设备的绝缘,造成了经济损失。SVC系统能够准确快速地进行无功补偿、稳定母线电压、提高功率因数的同时并能解决无功倒送问题。(4) 远距离电力传输在世界范围内,已经无数次证明了SVC可以显著提高电力系统输配电性能,在不同的电网条件下,在电网中适合的位置安装SVC系统可以保证一个平衡的电压
18、,可以稳定系统电压、减少电力传输线路损耗、提高输电线线路传输能力,让现有电网发挥出更高的效率、提高瞬变稳态极限、增加小干扰下的阻尼、增强电压控制及稳定性。(5) 电力机车供电目前电力机车的供电一般采用单相供电方式,而单相负荷就造成了供电网的严重三相不对称和低功率因数。在铁路沿线两侧安装SVC系统是目前解决这一问题的有效方法,利用SVC系统具有分相补偿和快速补偿的特点来平衡三相电网,并利用FC支路来提高电网功率因数。1.2 无功补偿装置的研究发展无功补偿装置在早期多采用并联电容器或者同步补偿器,他们多被用于集中补偿系统的高压侧。到目前为止,并联电容器仍作为一种主要的补偿方式存在,而且它的应用范围
19、非常广,唯一的区别在于控制器的不断更新进步。同步补偿器的实质就相当于一台同步电机,它的工作原理是电动机会随着励磁电流的电流值发生变化而变化,主要表现为平滑的改变输出的无功电流,包括电流的方向和大小,这样做有助于电力系统的稳定运行。但同步补偿器的缺点是:成本太高,安装比较复杂,维修护理比较困难,正是这些缺点使得同步补偿器的推广受到限制。在衡量电能质量的标准中,电压作为一个重要的指标对电网稳定运行起到重要作用。研究无功功率对维持电网电压稳定、提高电能质量、降低线路损耗、保证工农业安全生产具有重要的意义。 在交流电路中,电功率有两种:一种是有功功率,一种是无功功率。有功功率将电能转化为其他形式能量(
20、机械能、光能、热能)。无功功率比较抽象,它是用来在电气设备中建立和维持磁场,用于电路内电场与磁场交换,因此它不对外做功。凡是有电气线圈的电气设备,都需要建立磁场,这就要消耗无功功率。 无功功率不是无用功率,电动机的转子磁场就是靠从电源吸取无功功率建立的。变压器需要无功功率,才能使变压器的一次线圈产生磁场,从而在二次线圈感应出电压。在正常情况下,电气设备的正常运转不但需要有功功率,还需要无功功率。 电力系统中,电网各节点的电压水平与无功功率有不可分割的联系,无功功率的不足会造成电网电压的下降,降低发电机有功功率的输出、降低输变电设备的供电能力、造成线路电压损失增大和电能损耗增加、造成低功率因数运
21、行和电压下降,使电气设备容量得不到充分发挥。 由于从发电机经高压输电线传输的无功功率远远满足不了符合的要求,因此需要在电网中设置一些无功补偿装置来补充电网的无功功率,以保证用户对无功的需求,使用电设备在额定状态下工作。在当今电力用户中,不难发现在工业中存在大量无功功率变化频繁的设备,如电动机、电炉、变压器等。在普通用户中又有大量对电力系统电压稳定性有较高要求的精密电气,如计算机等,这些都使得对电力系统中无功功率的补偿变得尤为重要。1.3无功补偿的相关原理1.3.1无功补偿的概念提高系统功率因数的途径一般有:提高系统自然功率因数;安装无功补偿装置。无功补偿的原理简单来说,就是提供负载所需要的无功
22、功率,将电容器和电感并联在同一电路中,电感吸收能量时,电容器释放能量,而电感放出能量时,电容器在吸收能量,能量就在它们之间交换,即阻感性负载需要的无功功率可由电容器提供,反之,阻容性负载需要的无功功率可由电抗器提供,因此,按照负载的性质安装不同的设备可以提供负载所需要的无功功率而不再需要从电源获得,减轻了电力系统的压力。负载需要的无功功率Q,装设无功补偿装置后,补偿的无功为QC,这样电源输出的无功减少了QC,功率因数由原来的提高到补偿后的,视在功率由原来的减少到,但有功功率并没有变化。视在功率的减少可相应的减少供电线路的截面和变压器的容量,降低供电设备的投资。由功率损耗公式(2.1)和电压损耗
23、公式(2.2)可见电源输送的无功功率的减小,使电力网和变压器的功率损耗下降,提高了供电效率,并且降低了电力网中的电压损耗,提高了供电质量1415。 (2.1) (2.2)如前所述,工农业及家用等用电设备大部分是阻感负载,可看作电阻与电感串联的电路,其功率因数为 (2.3)图2.2 并联电容器无功补偿电路图将、串联电路并联接入电容C后,电路如图2.2所示。该电路的电流方程为 (2.4)并联电容后电压U与i的相位变小了,即供电回路功率因数提高了,根据补偿后的电流与电压的相位关系,分为电流滞后电压的欠补偿和电流超前电压的过补偿,在这种过补偿情形下,变压器的二次电压会引起一定的升高,而且阻容性的无功功
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- us 电力系统 无功 补偿 研究 本科毕业 论文
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内