数字图像处理图像变换ppt课件.ppt
《数字图像处理图像变换ppt课件.ppt》由会员分享,可在线阅读,更多相关《数字图像处理图像变换ppt课件.ppt(99页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、1数字图像处理图像变换内容提要l主要介绍图像处理中常用的二维离散变换的定义、性质、实现方法及应用。l经典变换离散傅里叶变换(DFT)l离散余弦变换(DCT)l离散沃尔什-哈达玛变换(DWT)lK-L变换(KLT)l离散小波变换(DWT)及其应用知识要点知识要点 l余弦型变换:余弦型变换:l傅里叶变换和余弦变换。傅里叶变换和余弦变换。l方波型变换:方波型变换:l沃尔什沃尔什- -哈达玛变换。哈达玛变换。l基于特征向量的变换:基于特征向量的变换:lK-LK-L变换。变换。l从哈尔变换、短时傅里叶变换到小波变换。从哈尔变换、短时傅里叶变换到小波变换。l各种变换的定义和有关快速算法及实现方法。各种变换
2、的定义和有关快速算法及实现方法。3.1 3.1 二维离散傅里叶变换(二维离散傅里叶变换(DFTDFT)3.1.1 二维连续傅里叶变换二维连续傅里叶变换l定义:设 f (x, y) 是独立变量x和y 的函数,且在 上绝对可积,则定义积分 为二维连续函数 f (x, y) 的傅里叶变换,并定义 为F (u, v) 的反变换。 f (x, y) 和F (u, v) 为傅里叶变换对。 |( , )|d df x yx y j2() ( , )( , )ed dux vyf x yF u vu v【例例3.1】求图3.1所示函数的傅里叶变换。 他其, 0,),(YyXxAyxf解:解: j2()j2j2
3、 0 0jj( , )( , )ed dededsin()sin()eeXYux vyuxvyuxvyF u vf x yx yAxyuXvYAXYuXvYsin() sin()( , )uXvYF u vAXYuXvY图3.1 二维信号f (x, y) 其幅度谱为其幅度谱为二维信号的频谱图(a)信号的频谱图)信号的频谱图 (b)图()图(a)的灰度图)的灰度图图图3.2 信号的频谱图信号的频谱图 3.1.2 3.1.2 二维离散傅里叶变换二维离散傅里叶变换l尺寸为MN的离散图像函数的DFT 1010)/(2),(1),(MxNyNvyMuxjeyxfMNvuFl反变换可以通过对F(u,v)
4、求IDFT获得 1010)/(2),(),(MuNvNvyMuxjevuFyxflF(u, v)即为f (x, y)的频谱,通常是复数:( , )( , )j ( , )F u vR u vI u v221/2|( , )| ( , )( , )F u vR u vIu v( , )( , )arctan( , )I u vu vR u v幅度谱幅度谱 相位谱相位谱 DFT幅度谱的特点幅度谱的特点 l 频谱的直流成分说明在频谱原点的傅频谱的直流成分说明在频谱原点的傅里叶变换里叶变换F(0, 0)等于图像的平均灰度级。等于图像的平均灰度级。l 幅度谱幅度谱|F(u, v)|关于原点对称。关于原点
5、对称。l 图像图像f (x, y)平移后,幅度谱不发生变化,平移后,幅度谱不发生变化,仅有相位发生变化。仅有相位发生变化。3.1.3 3.1.3 二维离散傅里叶变换的性质二维离散傅里叶变换的性质l1 1变换可分离性l二维DFT可以用两个可分离的一维DFT之积表示:11j2/j2/0011( , )e( , )eMNux Mvy NxyF u vf x yMN1j2/01( , )eMux MxF x vM式中,式中,1j2/01( , )( , )eNvy NyF x vf x yN结论:结论:(1)二维变换可以通过先进行二维变换可以通过先进行行变换行变换再进行再进行列变换列变换的两的两次一维
6、变换来实现。(次一维变换来实现。(2 2)也可以通过先求)也可以通过先求列变换列变换再求再求行变换行变换得到得到二维傅里叶变换。二维傅里叶变换。 图图3.3 用两次一维用两次一维DFT计算二维计算二维DFT 2 2周期性、共轭对称性及频谱中心化l周期性和共轭对称性来了许多方便。l首先来看一维的情况。l设有一矩形函数,求出它的傅里叶变换: ,0( )0,AxXf x其他jsin( )euXuXF uAXuXsin( )uXF uAXuX在进行在进行DFT之前用输入信号乘以(之前用输入信号乘以(-1)x,便可,便可以在一个周期的变换中求得一个完整的频谱。以在一个周期的变换中求得一个完整的频谱。 (
7、a)幅度谱)幅度谱 (b)原点平移后的幅度谱)原点平移后的幅度谱 图图3.4 频谱图频谱图 2211j(/2)j0011(/2)( )e( 1)( )eNNx u NxuxNNxxF uNf xf xNN 用(-1)x+y 乘以输入的图像函数,则有:)2/, 2/() 1)(,(NvMuFyxfDFTyxl原点原点F(0,0)被设置在被设置在 u = M/2和和v = N/2上。上。l如果是一幅图像,在原点的傅里叶变换如果是一幅图像,在原点的傅里叶变换F(0,0)等于图像的平均灰度级,也称作频率等于图像的平均灰度级,也称作频率谱的直流成分。谱的直流成分。 3离散卷积定理l设f (x, y)和g
8、(x, y) 是大小分别为AB和CD的两个数组,则它们的离散卷积定义为DFT ( , )* ( , )( , ) ( , )f x yg x yF u v G u vl卷积定理卷积定理1010),(),(),(*),(MmNnnymxgnmfyxgyxf【例3.2】用MATLAB实现图像的傅里叶变换。l为了增强显示效果,用对数对频谱的幅度进行压缩,然为了增强显示效果,用对数对频谱的幅度进行压缩,然后将频谱幅度的对数值用在后将频谱幅度的对数值用在010之间的值进行显示。之间的值进行显示。l【解解】MATLAB程序如下:程序如下:lI = imread(pout.tif);%读入图像读入图像lim
9、show(I); %显示图像显示图像lF1 = fft2(I); %计算二维傅里叶变换计算二维傅里叶变换lfigure, imshow(log(abs(F1)+1),0 10); l%显示对数变换后的频谱图显示对数变换后的频谱图lF2 = fftshift(F1); %将直流分量移到频谱图的中心将直流分量移到频谱图的中心lfigure, imshow(log(abs(F2)+1),0 10); l%显示对数变换后中心化的频谱图显示对数变换后中心化的频谱图(a)原始图像)原始图像 (b) 中心化前的频谱图中心化前的频谱图 (c) 中心化后的频谱中心化后的频谱图图3.6 图像频谱的中心化图像频谱的
10、中心化 (a)原始图像 (b)图像的频谱图 (c)中心化的频谱图图3.7 傅里叶变换1.4 快速傅里叶变换快速傅里叶变换(FFT) 随着计算机技术和数字电路的迅速发展,在随着计算机技术和数字电路的迅速发展,在信号处理中使用计算机和数字电路的趋势愈信号处理中使用计算机和数字电路的趋势愈加明显。离散傅里叶变换已成为数字信号处加明显。离散傅里叶变换已成为数字信号处理的重要工具。理的重要工具。 快速傅里叶变换并不是一种新的变换,它是离快速傅里叶变换并不是一种新的变换,它是离散傅里叶变换的一种算法。散傅里叶变换的一种算法。这种方法是在分析这种方法是在分析离散傅里叶变换中的多余运算的基础上,进而离散傅里叶
11、变换中的多余运算的基础上,进而消除这些重复工作的思想指导下得到的,所以消除这些重复工作的思想指导下得到的,所以在运算中大大节省了工作量,达到了快速运算在运算中大大节省了工作量,达到了快速运算的目的。的目的。对于一个有限长序列对于一个有限长序列 ,它的傅里叶变换由下式表示它的傅里叶变换由下式表示 ( )()x nnN01X mx n emNnNjmnN( )( ), ,0120 11(347) 令令 221,jjNNWeWex nNX m WnNmn( )( )101将正变换式(将正变换式(348)展开可得到如下算式)展开可得到如下算式X mx n WnNmn( )( )01因此,傅里叶变换对可
12、写成下式因此,傅里叶变换对可写成下式 (349) (348) XxWxWx NWXxWxWx NWXxWxWx NWX NxWxWx NWNNNNNNN( )( )( )()( )( )( )()( )( )( )()()( )( )()()()()()()()()00111011201110110001011011112021211 01 111 (350) ) 1()2() 1 ()0( )1()2() 1 ()0() 1)(1(1 ) 1(0) 1() 1(22120) 1( 11110) 1(00100NxxxxWWWWWWWWWWWWNXXXXNNNNNNN上面的方程式(350)可以
13、用矩阵来表示(351) 从上面的运算显然可以看出,要得到每一个频率分从上面的运算显然可以看出,要得到每一个频率分量,需进行量,需进行N次乘法和次乘法和N-1次加法运算。要完成整个次加法运算。要完成整个变换需要变换需要 次乘法和次乘法和N(N-1)次加法运算。当序列次加法运算。当序列较长时,必然要花费大量的时间。较长时,必然要花费大量的时间。 N2观察上述系数矩阵,发现观察上述系数矩阵,发现 是以为是以为N周期的,周期的,即即 Wmn()()mlNnhNm nWW(352) jWjWNN434,WWNN 112, 例如,当例如,当N=8时,其周期性如图时,其周期性如图36所示。由于所示。由于 所
14、以,当所以,当N=8时,时,可得:可得:WeNjNjN222cossin6W 5W 7W 4W 0W 3W 1W 2W 图 36 N=8 时 的周期性和对称性的周期性和对称性 mnW可见,离散傅里叶变换中的乘法运算有许多重复内可见,离散傅里叶变换中的乘法运算有许多重复内容。容。1965年库利图基提出把原始的年库利图基提出把原始的N点序列依次点序列依次分解成一系列短序列,然后,求出这些短序列的离分解成一系列短序列,然后,求出这些短序列的离散傅里叶变换,以此来减少乘法运算。散傅里叶变换,以此来减少乘法运算。 快速傅里叶变换简称快速傅里叶变换简称FFT。算法根据分解的特点。算法根据分解的特点一般有两
15、类,一般有两类,一类是按时间分解一类是按时间分解,一,一类是按频率类是按频率分解分解。下面介绍一下的基本形式及运算蝶。下面介绍一下的基本形式及运算蝶式流程图。式流程图。 1.4. 基数按时间分解的算法基数按时间分解的算法把把 x(n) 分成偶数点和奇数点分成偶数点和奇数点,即即:这种算法的流程图如图这种算法的流程图如图37所示:图所示:图(a)输入为顺序输入为顺序的,运算结果是乱序的;图的,运算结果是乱序的;图(b)输入为乱序的,运算输入为乱序的,运算结果是顺序的。结果是顺序的。x nxnnNxnxnnN1220 121210 121( )(), ,;( )(), , .蝶式运算流程图 (按时
16、间分解) 蝶式运算流程图 (按时间分解)1.4. 基数基数2按频率分解的算法按频率分解的算法 这种分解方法是直接把序列分为前这种分解方法是直接把序列分为前 点和后点和后 点两个序列,即点两个序列,即 N2N212, 2 , 1 , 0 2)(12, 2 , 1 , 0 )()(21NnNnxnxNnnxnx(355) 1.5 用计算机实现快速付傅里叶变换用计算机实现快速付傅里叶变换 利用利用 FFT 蝶式流程图算法在计算机上实现快速傅蝶式流程图算法在计算机上实现快速傅里叶变换必须解决如下问题:里叶变换必须解决如下问题:1)、)、 迭代次数迭代次数 r 的确定;的确定;2)、对偶节点的计算;)、
17、对偶节点的计算;3)、加权系数)、加权系数 的计算;的计算;4)、重新排序问题。)、重新排序问题。WNP(1) 迭代次数迭代次数r的确定的确定 由蝶式流程图可见,迭代次数由蝶式流程图可见,迭代次数 r 与与 N 有关。值有关。值可由下式确定可由下式确定 Nr2log(359) 式中式中 N 是变换序列的长度。对于前述基数是变换序列的长度。对于前述基数2的蝶式的蝶式流程图是流程图是2的整数次幂。例如,序列长度为的整数次幂。例如,序列长度为8则要三则要三次迭代,序列长度为次迭代,序列长度为16时就要时就要4次迭代等等。次迭代等等。(2) 对偶节点的计算对偶节点的计算 在流程图中把标有在流程图中把标
18、有 的点称为节点。其中下标的点称为节点。其中下标 l为列数,也就是第几次迭代,例如,为列数,也就是第几次迭代,例如, 则说明它则说明它是第一次迭代的结果。是第一次迭代的结果。 代表流程图中的行数,代表流程图中的行数,也就是序列的序号数。其中每一节点的值均是用前也就是序列的序号数。其中每一节点的值均是用前一节点对计算得来的。一节点对计算得来的。)(kxlx k1( )k 在蝶式流程图中,在蝶式流程图中,把具有相同来源的一对节点叫把具有相同来源的一对节点叫做对偶节点。做对偶节点。如如: 和和 就是一对就是一对对偶节点,因为它们均来源于对偶节点,因为它们均来源于 x(0) 和和 x(4) 。 对对偶
19、节点的计算也就是求出在每次迭代中对偶节偶节点的计算也就是求出在每次迭代中对偶节点的间隔或者节距。点的间隔或者节距。x10( )x14( ) 由流程图可见,第一次迭代的节距为由流程图可见,第一次迭代的节距为 ,第,第二次迭代的节距为二次迭代的节距为 ,第三次迭代的节距为,第三次迭代的节距为 等等。由以上分析可得到如下对偶节点的等等。由以上分析可得到如下对偶节点的计算方法。计算方法。4NN2N23)(kxl如果某一节点为如果某一节点为 ,那么,它的对偶节点为,那么,它的对偶节点为llNkx2式中式中 l 是表明第几次迭代的数字,是表明第几次迭代的数字,k 是序列的序是序列的序号数,号数,N 是序列
20、长度。是序列长度。(360) 例:如果序列长度例:如果序列长度N=8,求,求 的对偶节点的对偶节点。 x21( )可利用式(可利用式(360)计算,得)计算,得)3()1 ()1 ()3(281210812222xWxxxxNkxll则则xxW x21841313( )( )( )其正确性不难由流程图来验证。其正确性不难由流程图来验证。(3)加权系数)加权系数 的计算的计算 WNP 的计算主要是确定的计算主要是确定 P值。值。P 值可用下述方法值可用下述方法求得求得。 WNP (1)把把k值写成值写成r位的二进制数(位的二进制数(k 是序列的序号数,是序列的序号数,r 是迭代次数);是迭代次数
21、); ()把这个二进制数右移()把这个二进制数右移 r-l 位,并把左边的空位位,并把左边的空位补零(结果仍为补零(结果仍为 r 位);位); ()把这个右移后的二进制数进行比特倒转;()把这个右移后的二进制数进行比特倒转; ()把这比特倒转后的二进制数翻成十进制数就()把这比特倒转后的二进制数翻成十进制数就得到得到p值。值。例:求例:求 的加的加 权系数权系数 。x22( )WP8 由由 和和 可知可知: :k=2=2,l=2=2,n=8=8, 则则x22( )WP8rNloglog2283 ()因为()因为k=2=2,所以写成二进制数为,所以写成二进制数为010010; ()()r- -l
22、=3-2=1=3-2=1,把,把010010右移一位得到右移一位得到001001; ()把()把001001做位序颠倒,即做比特倒转,得到做位序颠倒,即做比特倒转,得到100100; ()把()把100100译成十进制数,得到译成十进制数,得到4 4,所以,所以 P=4=4, 的加权值为的加权值为 。W84x22( ) 结合对偶节点的计算,可以看出结合对偶节点的计算,可以看出 具有下述规具有下述规律:律:如果某一节点上的加权系数为如果某一节点上的加权系数为 ,则其对偶,则其对偶节点的加权系数必然是节点的加权系数必然是 ,而且,而且 WNPWNPWNPN2WWNPNPN 2所以一对对偶节点可用下
23、式计算所以一对对偶节点可用下式计算 llPNllNkxWkxkx2)(11llPNlllNkxWkxNkx2)(211(361) (362) (4)重新排序)重新排序 由蝶式流程图可见,如果序列由蝶式流程图可见,如果序列 x(n) 是按顺序排列是按顺序排列的,经过蝶式运算后,其变换序列的,经过蝶式运算后,其变换序列 X(m) 是非顺序是非顺序排列的,即乱序的;反之,如果排列的,即乱序的;反之,如果 x(n) 是乱序的,是乱序的,那么,那么,X(m)就是顺序的。因此,为了便于输出使用,就是顺序的。因此,为了便于输出使用,最好加入重新排序程序,以便保证最好加入重新排序程序,以便保证 x(n) 与它
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数字图像 处理 图像 变换 ppt 课件
限制150内