《实数全章复习与巩固(提高)知识讲解.doc》由会员分享,可在线阅读,更多相关《实数全章复习与巩固(提高)知识讲解.doc(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上实数全章复习与巩固(提高)撰稿:康红梅 责编:吴婷婷【学习目标】1.了解算术平方根、平方根、立方根的概念,会用根号表示数的平方根、立方根.2.了解开方与乘方互为逆运算,会用平方运算求某些非负数的平方根,会用立方运算求某些数的立方根,会用计算器求平方根和立方根.3.了解无理数和实数的概念,知道实数与数轴上的点一一对应,有序实数对与平面上的点一一对应;了解数的范围由有理数扩大为实数后,概念、运算等的一致性及其发展变化.4.能用有理数估计一个无理数的大致范围.【知识网络】【要点梳理】【高清课堂: 实数复习,知识要点】要点一、平方根和立方根 类型项目平方根立方根被开方数非负数
2、任意实数符号表示性质一个正数有两个平方根,且互为相反数;零的平方根为零;负数没有平方根;一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零;重要结论要点二、实数有理数和无理数统称为实数.1.实数的分类按定义分: 实数按与0的大小关系分: 实数要点诠释:(1)所有的实数分成三类:有限小数,无限循环小数,无限不循环小数其中有限小数和无限循环小数统称有理数,无限不循环小数叫做无理数(2)无理数分成三类:开方开不尽的数,如,等;有特殊意义的数,如; 有特定结构的数,如0. (3)凡能写成无限不循环小数的数都是无理数,并且无理数不能写成分数形式.(4)实数和数轴上点是一一对应的.2.实数
3、与数轴上的点一 一对应.数轴上的任何一个点都对应一个实数,反之任何一个实数都能在数轴上找到一个点与之对应.3.实数的三个非负性及性质:在实数范围内,正数和零统称为非负数。我们已经学习过的非负数有如下三种形式: (1)任何一个实数的绝对值是非负数,即|0;(2)任何一个实数的平方是非负数,即0;(3)任何非负数的算术平方根是非负数,即 ().非负数具有以下性质:(1)非负数有最小值零;(2)有限个非负数之和仍是非负数;(3)几个非负数之和等于0,则每个非负数都等于0.4.实数的运算:数的相反数是;一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0.有理数的运算法则和运算律
4、在实数范围内仍然成立.实数混合运算的运算顺序:先乘方、开方、再乘除,最后算加减.同级运算按从左到右顺序进行,有括号先算括号里. 5.实数的大小的比较:有理数大小的比较法则在实数范围内仍然成立.法则1. 实数和数轴上的点一一对应,在数轴上表示的两个数,右边的数总比左边的数 大;法则2正数大于0,0大于负数,正数大于一切负数,两个负数比较,绝对值大的反而小;法则3. 两个数比较大小常见的方法有:求差法,求商法,倒数法,估算法,平方法.【典型例题】类型一、有关方根的问题【高清课堂: 实数复习,例1】1、已知,求的值.【思路点拨】由被开方数是非负数,分母不为0得出的值,从而求出值,及的值.【答案与解析
5、】解:由题意得 ,解得32.【总结升华】根据使式子有意义的条件列出方程,解方程,从而得到的值.举一反三:【变式1】已知,求的平方根。【答案】解:由题意得: 解得23,的平方根为3.【变式2】若和互为相反数,试求的值。【答案】解:和互为相反数, 37340 3()3,1.2、已知M是满足不等式的所有整数的和,N是满足不等式的最大整数求MN的平方根【答案与解析】解:的所有整数有1,0,1,2 所有整数的和M11022 2,N是满足不等式的最大整数 N2 MN4,MN的平方根是2.【总结升华】先由已知条件确定M、N的值,再根据平方根的定义求出MN的平方根类型二、与实数有关的问题3、已知是的整数部分,
6、是它的小数部分,求的值【思路点拨】一个数是由整数部分小数部分构成的.通过估算的整数部分是3,那么它的小数部分就是,再代入式子求值.【答案与解析】解:是的整数部分,是它的小数部分,.【总结升华】可用夹挤法来确定,即看介于哪两个相邻的完全平方数之间,然后开平方.这个数减去它的整数部分后就是它的小数部分.举一反三:【变式】 已知5的小数部分为,5的小数部分为,则的值是 ;的值是_.【答案】;提示:由题意可知,.4、阅读理解,回答问题.在解决数学问题的过程中,有时会遇到比较两数大小的问题,解决这类问题的关键是根据命题的题设和结论特征,采用相应办法,其中巧用“作差法”是解决此类问题的一种行之有效的方法:
7、若0,则;若0,则;若0,则.例如:在比较与的大小时,小东同学的作法是: 请你参考小东同学的作法,比较与的大小.【思路点拨】仿照例题,做差后经过计算判断差与0的关系,从而比较大小.【答案与解析】解:【总结升华】实数比较大小常用的有作差法和作商法,根据具体情况加以选择.举一反三:【高清课堂: 实数复习,例5】【变式】实数在数轴上的位置如图所示,则的大小关系是: ;【答案】;类型三、实数综合应用5、已知、满足,解关于的方程。【答案与解析】解:280, 0,解得4, ,代入方程:【总结升华】先由非负数和为0,则几个非负数分别为0解出、的值,再解方程.举一反三:【变式】设、都是实数,且满足,求代数式的值。【答案】解: ,解得.【高清课堂:实数复习,例6】6、阅读材料:学习了无理数后,某数学兴趣小组开展了一次探究活动:估算的近似值.小明的方法:,设().解得 .问题:(1)请你依照小明的方法,估算的近似值;(2)请结合上述具体实例,概括出估算的公式:已知非负整数、,若,且,则_(用含、的代数式表示);(3)请用(2)中的结论估算的近似值. 【答案与解析】解:(1),设().解得 .(2),设().对比,(3),6.083.【总结升华】此题比较新颖,关键是通过阅读材料快速掌握估值的方法.(2)问中要对比式子,找准和,表示出.专心-专注-专业
限制150内