高中含参不等式的恒成立问题整理版(共11页).doc
《高中含参不等式的恒成立问题整理版(共11页).doc》由会员分享,可在线阅读,更多相关《高中含参不等式的恒成立问题整理版(共11页).doc(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上高中数学不等式的恒成立问题一、用一元二次方程根的判别式有关含有参数的一元二次不等式问题,若能把不等式转化成二次函数或二次方程,通过根的判别式或数形结合思想,可使问题得到顺利解决。基本结论总结例1对于xR,不等式恒成立,求实数m的取值范围。例2:已知不等式对于恒成立,求参数的取值范围解:要使对于恒成立,则只须满足:(1) 或(2)解(1)得 ,解(2)参数的取值范围是练习1. 已知函数的定义域为R,求实数的取值范围。2.若对于xR,不等式恒成立,求实数m的取值范围。3.若不等式的解集是R,求m的范围。4.取一切实数时,使恒有意义,求实数的取值范围例3设,当时,恒成立,求
2、实数的取值范围。Oxyx-1关键点拨:为了使在恒成立,构造一个新函数是解题的关键,再利用二次函数的图象性质进行分类讨论,使问题得到圆满解决。若二次不等式中的取值范围有限制,则可利用根的分布解决问题。解:,则当时,恒成立当时,显然成立;当时,如图,恒成立的充要条件为:解得。综上可得实数的取值范围为。例4 。已知,求使不等式对任意恒成立的a的取值范围。解法1:数形结合结合函数的草图可知时恒成立。所以a的取值范围是。解法2:转化为最值研究 1. 若上的最大值。 2. 若,得,所以。综上:a的取值范围是。注:1. 此处是对参a进行分类讨论,每一类中求得的a的范围均合题意,故对每一类中所求得的a的范围求
3、并集。 2. 恒成立; 解法3:分离参数。设, 注:1. 运用此法最终仍归结为求函数的最值,但由于将参数a与变量x分离,因此在求最值时避免了分类讨论,使问题相对简化。 2. 本题若将“”改为“”可类似上述三种方法完成。仿解法1:即读者可仿解法2,解法3类似完成,但应注意等号问题,即此处也合题。例5. 已知:求使恒成立的a的取值范围。解法1:数形结合结合的草图可得:或得:。解法2:转化为最值研究 1. ,所以。 2. 若矛盾。 3. 若矛盾。综上:a的取值范围是。解法3:分离参数 1. 时,不等式显然成立,即此时a可为任意实数; 2. 时,。因为上单调递减,所以; 3. 时,。因为在(0,1)上
4、单调递减,所以。综上:a的范围是:。注:本题中由于x的取值可正可负,不便对参数a直接分离,故采取了先对x分类,再分离参数a,最后对各类中求得a的范围求交集,这与例1方法三中对各类中求得的a的范围求并集是不同的,应引起注意!例6. 已知:,求使对任意恒成立的x的取值范围。解:习惯上视x为主元而a为辅元,但本题中是a在上任意变化时不等式恒成立,故可将a视为主元。变更主元法:设,则的图像为一直线,则时恒成立即x的范围是: 总之,处理不等式恒成立问题首先应分清谁是主元(哪一个变量在给定区间上任意变化,则该变量即为主元相当于函数自变量),然后可数形结合或转化为最值研究。若易于将参变量分离的可先分离参变量
5、再求最值,若需分类讨论则应注意分类标准和最后的小结(分清是求交集,还是求并集)。二、利用函数的最值(或值域)(1)对任意x都成立(2)对任意x都成立。简单计作:大的大于最大的,小的小于最小的。由此看出,本类问题实质上是一类求函数的最值问题。例1已知函数,若对任意,恒成立,求实数的取值范围。解:若对任意,恒成立,即对,恒成立,考虑到不等式的分母,只需在时恒成立而得而抛物线在的最小值得 例2 已知,若恒成立,求a的取值范围. 解析 本题可以化归为求函数f(x)在闭区间上的最值问题,只要对于任意.若恒成立或或,即a的取值范围为.点评 对于含参数的函数在闭区间上函数值恒大于等于或小于等于常数问题,可以
6、求函数最值的方法,只要利用恒成立;恒成立.本题也可以用零点分布策略求解.设函数是定义在上的增函数,如果不等式对于任意恒成立,求实数的取值范围。分析:本题可利用函数的单调性把原不等式问题转化为对于任意恒成立,从而转化为二次函数区间最值求解。解:是增函数对于任意恒成立对于任意恒成立对于任意恒成立,令,所以原问题,又即 易求得。三、变更主元法在解含参不等式时,有时若能换一个角度,变参数为主元,可以得到意想不到的效果,使问题能更迅速地得到解决。一般来说,已知存在范围的量视为变量,而待求范围的量视为参数. 用一次函数的性质 对于一次函数有:例题1:已知不等式对任意的都成立,求的取值范围.解:我们可以用改
7、变主元的办法,将m视为主变元,原不等式可化为令是关于m的一次函数。由题意知解得x的取值范围是关键点拨:利用函数思想,变换主元,通过直线方程的性质求解。评注:此类问题常因思维定势,学生易把它看成关于的不等式讨论,从而因计算繁琐出错或者中途夭折;若转换一下思路,把待求的x为参数,以为变量,令则问题转化为求一次函数(或常数函数)的值在内恒为负的问题,再来求解参数应满足的条件这样问题就轻而易举的得到解决了例2对任意,不等式恒成立,求的取值范围。分析:题中的不等式是关于的一元二次不等式,但若把看成主元,则问题可转化为一次不等式在上恒成立的问题。解:令,则原问题转化为恒成立()。当时,可得,不合题意。当时
8、,应有解之得。故的取值范围为。例3 已知对于任意的a-1,1,函数f(x)=ax2+(2a-4)x+3-a0 恒成立,求x的取值范围.解析 本题按常规思路是分a=0时f(x)是一次函数,a0时是二次函数两种情况讨论,不容易求x的取值范围。因此,我们不能总是把x看成是变量,把a看成常参数,我们可以通过变量转换,把a看成变量,x看成常参数,这就转化一次函数问题,问题就变得容易求解。令g(a)=(x2+2x-1)a-4x+3在a-1,1时,g(a)0恒成立,则,得.点评 对于含有两个参数,且已知一参数的取值范围,可以通过变量转换,构造以该参数为自变量的函数,利用函数图象求另一参数的取值范围。例4 对
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中 不等式 成立 问题 整理 11
限制150内