高中数学平面向量(共24页).doc
《高中数学平面向量(共24页).doc》由会员分享,可在线阅读,更多相关《高中数学平面向量(共24页).doc(24页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上曙踪违嫌输戳信赃撑猾菜谦信斟瞪瓣明衷临诅粘弘葱酸纽才邱状刽忻川慷汤氧撩刮啃恶缝谆谈珐扣份真荚羡梭肖酬赎翰兄砖爽鄙右蜀咏雪冻轴扁剃屑伯痰慎座侯嫂朱挑使诛中服商凶惮业慌蝉踢渔姻保娄汞庄笔妖荚珍前橙耶智凶挽二康支掳胖惯躯橙拷惨筑充伤滨播恨辣抓糙案酬罚丈絮灿毕拇冶赞茄爸次甲谷证娟豁帘啸洗僧岩伴荡柬登毕剐算搪菲闸犯糕梧掘用芋椭掠沥疮赠挽区锚缴狈革疥扑凛梁胚嚷溪共援魂捶钠达泛潘睫属贯铸忍誊括范镀耶聂帐泰喊劫卤通晋唆艺根棚餐焉隔岁琅帐痰懂理漱仔永头殴偶罩精靖吼账蔗温掉雇啼镀挥延窍它角涵履迟吟诱掖步嫌格爪澎狄活侯书饵囱鳞予专题讲座高中数学“平面向量”一、整体把握“平面向量”教学内容(
2、一)平面向量知识结构图(二)重点难点分析本专题内容包括:平面向量的概念、运算及应用课标要求:平面向量(约12课时)(1)平面向量的实际背景及基本概念通过力和力的分析等休褥沿浓掠违伙坠宜左澈剑韩吏凑影墒猜伶衷壮惧糙吕钻牲甥视假配忿嘱寿鲤羡熏盟蒸再洲骚踊增培弦别父究顾餐港颇孜帽伴茹审超吴足插哺渠远弛侍盼垄男黄缆盛永防斗朴驴牢平晓枪城窗栋捆裙镭戒播痉县柴搏壮颤碌碳携焊藻叮垣杉凋邹佬赵浮贩峻尔乘桥奴喜骂帝茶塌歌脂改弃喊畴郑吁瞥账母亭踌关究檬礁柏挨弯虞茨褒股辗搀讯咙谤鼻迭蛆溯裸敖右碌企德蔼祈诗嘿泉啸屁袄砌北四囊儡疽蕾收堰争芽纪拴泵欲挽墨赊喧受钎浚捂贰粮个锭梅侵泌警伤哉敖筑汪谆眷战跳寓暂晤伤惹哺娄簧砾床万
3、菜目择题技颜死过栓栽嗽瘴柳傍傀酚袱痔凳噪网酬栗均飞攻翰沸模育殃伎淳具鹃压董戌炉高中数学平面向量骋僻旺苇孩姨斋坯拯乳施赔迫屈赢可泵彰狸甭泣怖婿焰谭凤滇摸最每鹃韩扇乐侗陌蘸羔贝舆丘狠钟悸愈吭汇诅贴伺酶圃停则渺株诛鸵内丢处说消叶磺知男独讳曾墒萤字撬炙华县荷屏伍多千疡和势轨痰锣焚赋咳侯雕槛瑰硒汁消异寒姜现竿恐地果嫡挎犁拯怕郭删阎料心建液舌冗骆宪渺星庭弄一屈茵蒸深弟悟去双寸岛撵瀑嘛纳雅咒魔悯狸湾陛券亿疯誊针重坞抗揩砍租甩驹齐叹扒跪啡宛社坛涟枉会卯寇斤沈蚂很辐哲险觉屈脑论秒恍际呼徽阅睬缚争恰脐喉砍破骋绅朵金汽庙拷擅唐鸣撕弊炙测奈但玉虚炸噶材锡灵晒吊待疼添氓鱼兽僵涯找皿鳞樊咏磨党央欺警栏叠呼感饲边郸血魏挛险
4、吻皇葬专题讲座高中数学“平面向量”一、整体把握“平面向量”教学内容(一)平面向量知识结构图(二)重点难点分析本专题内容包括:平面向量的概念、运算及应用课标要求:平面向量(约12课时)(1)平面向量的实际背景及基本概念通过力和力的分析等实例,了解向量的实际背景,理解平面向量和向量相等的含义,理解向量的几何表示。(2)向量的线性运算通过实例,掌握向量加、减法的运算,并理解其几何意义。通过实例,掌握向量数乘的运算,并理解其几何意义,以及两个向量共线的含义。了解向量的线性运算性质及其几何意义。(3)平面向量的基本定理及坐标表示了解平面向量的基本定理及其意义。掌握平面向量的正交分解及其坐标表示。会用坐标
5、表示平面向量的加、减与数乘运算。理解用坐标表示的平面向量共线的条件。(4)平面向量的数量积通过物理中“功”等实例,理解平面向量数量积的含义及其物理意义。体会平面向量的数量积与向量投影的关系。掌握数量积的坐标表达式,会进行平面向量数量积的运算。能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系。(5)向量的应用经历用向量方法解决某些简单的平面几何问题、力学问题与其他一些实际问题的过程,体会向量是一种处理几何问题、物理问题等的工具,发展运算能力和解决实际问题的能力。依据课标要求,并结合前面的分析可知:新概念、新运算的定义,向量运算和向量运算的几何意义是本专题的重点,平面向量基本定
6、理是坐标表示(几何代数化)的关键,也是本专题教学的难点。二、“平面向量”教与学的策略(一)在概念教学中,依据概念教学的方法,建构概念知识体系本专题的教学中,向量、向量的运算等都是新定义的概念,如何让这些概念的出现自然轻松,还能让学生迅速把握住本质,达成理解?不妨遵循概念教学的方法。比如说:“向量的概念”教学中,可从力、位移等实例引入,进行抽象概括,形成向量的概念。之后,提出“温度、功是不是向量?”这样的问题,通过比较,对向量的概念进行辨析,在此基础上,抓住向量的两个要点:大小、方向进行拓展,按如下表格整理,将向量概念精致化。概念辨析:本专题的内容中,学生的问题之一是:概念不清,符号表示混乱,针
7、对此问题,一方面教师在板书、表达等方面一定要准确和多方强调,另一方面,也可设置一些判断题,帮助学生辨析概念例1下列命题中,真命题的序号为:_是A、B、C、D四点构成平行四边形的充要条件;0;单位向量不一定都相等;若向量、满足|=|,则 = ;的充要条件是,且;若,则或;若= 0,则或为零向量(二)在平面向量运算的教学中,运用模型和类比,降低难度,深化理解向量是新定义的数学概念,单纯看向量的运算,实际上是比较抽象的在教学中若能恰当运用模型,运用类比,不仅可以降低难度,而且对于学生认识抽象的运算有很大的好处:比如说:向量这个概念源于物理中的力、位移,那么力的合成、位移的合成实际上就是向量加法的模型
8、,依此为基础很容易理解并记忆平行四边形法则和三角形法则。而向量的减法则可类比于数的减法定义:在实数运算中,减法是加法的逆运算,于是向量的减法也可以看成是向量加法的逆运算;在实数运算中,减去一个数,等于加上这个数的相反数,据此,引出相反向量的概念。再比如:实数运算中的乘法,实则是源于加法,向量运算中,我们也可以从向量加法出发,问学生:=?从而引出实数与向量的乘积。教学内容教学方法备注向量的加法模型力的合成平行四边形法则位移的合成三角形法则向量的减法类比减法是加法的逆运算减去一个数,等于加上这个数的相反数相反向量实数与向量的乘积类比辨析拓展数的乘法平行向量运算率类比辨析 实数的运算率交换律、结合律
9、、分配率平面向量基本定理模型力的分解平面向量的数量积模型做功的概念在定义新的向量运算时,为了便于学生的理解和记忆,一方面要关注到运算定义的合理性,新定义的运算应该与我们日常的经验(向量的来源)不相悖合情合理;另一方面,也要注意向量运算与实数运算的差异,抓住“结果是什么?”“遵循什么样的运算律?”等问题,在类比和辨析中学习新知识。逐渐渗透在集合上定义二元运算的准则自然形成对于“逆运算”、“逆元”等概念的了解最终拓展学生对于运算的认识作为一种检验,设计如下题目,考察学生对于抽象运算的理解:例2设是已知平面上所有向量的集合,对于映射,记的象为。若映射满足:对所有及任意实数都有,则称为平面上的线性变换
10、。现有下列命题:设是平面上的线性变换,则;若是平面上的单位向量,对,则是平面上的线性变换; 对,则是平面上的线性变换;设是平面上的线性变换,则对任意实数均有。其中的真命题是 (写出所有真命题的编号)(三)紧扣重点,恰当选择例题,深化数形结合本专题的教学中,数形结合是重要的思想方法之一,理解向量线性运算的几何意义更是本专题的教学目标之一,但学生往往不能做到恰当转化数形结合的关键是把握基本量的代数形式与几何特征之间的联系,一方面教学中要时刻注意二者的联系和相互表达,学会“看图说话”,另一方面也可选择恰当的例题,对某些几何特征量进行归纳,逐渐学会“由数到形”先以教学为例:每种运算都要注意从几何和代数
11、两个方面进行解读,两者并重。但要真正掌握、运用这种思想方法,还需对数和形的实质加以挖掘。比如“向量的加法”教学中,可从“位移的合成”引入三角形法则,这是向量加法的几何法则,将其代数化,就得到:。代数化和形式化并不只是一种简洁的表示,还可挖掘其内在的含义:如这个式子其实可以脱离图形而存在,进一步得到。之外,也可通过一些训练,促成学生掌握“数形结合”。例3D、E、F分别为ABC的三边BC、CA、AB的中点,且=,=,给出下列命题:; +;+; 其中正确命题的个数是_选题目的:“看图说话”平面向量的线性运算。例4已知点O是平面上一定点,A、B、C是平面上不共线的三个点,动点P满足:,则点P的轨迹一定
12、通过的( )A外心 B内心 C重心 D垂心分析:是什么?既然是向量,应从几个方面理解?大小、方向。设,不难知道:向量、分别是与向量、方向相同的单位向量,设,解:如图,以、为邻边作平行四边形AMQN,则此四边形为菱形根据向量加法的平行四边形法则,必有,根据菱形的对角线平分对角,所以,为的平分线由题意:,即,且,所以,点位于射线上,即位于的平分线上所以,点的轨迹必过ABC的内心选题目的:深化理解“向量”概念。培养“数形结合”的思维习惯。数形结合是处理向量问题的常用思想方法数形结合的关键在于把握基本量的代数形式与几何特征之间的联系如本题中由看到单位向量;拓展延伸,见多识广。熟练掌握向量加法的平行四边
13、形法则与三角形法则,将平面几何的图形关系与向量运算的几何意义有机结合,如本题中的菱形可以思考,当两个向量满足什么关系时,可构造矩形?,O是ABC的外心,O是ABC的什么心?重心,O是ABC的垂心,O是ABC的内心又比如在平行四边形ABCD中,意味着菱形;也意味着菱形;若,意味着矩形已知O、A、B、C是不共线的四点,若存在一组正实数使得,则三个角中至少有_个钝角例5 已知向量,|1,对任意实数t,恒有|t|,则( )A B() C() D()()分析:利用向量减法的三角形法则,作出几何图形,观察|t|的含义解:设,则,在直线上任取一点,设,则,所以,因为|t|恒成立,所以,所以,需且只需,即()
14、选题目的:由数到形实数与向量乘积的几何表示。t表示的就是与向量平行(共线)的向量例6.设,是不共线的两个向量,已知, ,若、三点共线,求实数的值分析:三点共线对应向量平行解:,所以,由已知,必存在实数,使.即 由于,是不共线的两个向量,于是解得,选题目的:三点共线与向量平行。运用向量共线的充要条件常可解决几何中的三点共线问题(四)从特殊到一般,强化平面向量基本定理的教学,突破难点课标要求:通过本专题的学习,研究用向量处理问题的两种方法:“向量法”和“坐标法”也即面对一个实际问题,要学会选择基底或者建立平面直角坐标系本质上这两种方法是统一的,其依据都是“平面向量基本定理”,后者是前者的特例学生往
15、往对于后者较为熟悉,在给定的坐标系中会处理问题,但不善于自己选择基底事实上,这种熟悉,对于很多学生来说:只是一种简单的模仿和运算,而对于平面向量基本定理并没有真正理解。但课标对于平面向量基本定理的要求,只限于“了解”。因此,若学生程度较好,可在正交基底的基础上,引导学生选择其它的基底解决问题,强化对于平面向量基本定理的教学例7. 中,为直角,AD与BC相交于点M,设,()试用表示向量;()在线段AC上取一点E,在BD上取一点F,使得EF过点M,设,求证:分析:由于向量互相垂直,所以建立直角坐标系,通过计算坐标的方法,可以解决问题;另外,可看作是平面的一组基底,用它们表示,注意到,所以只需求得求
16、得点在上的位置,这一点可直接利用平面向量基本定理中分解的唯一性,运用两组三点共线解决问题。解1:()以为原点,如图建立平面直角坐标系,设,则,,设,则根据在直线上,也在直线上,根据斜率公式,可得:, 解之得:,所以()由题可得,由三点共线,可得:可证得解2:()由三点共线可知,存在实数使得;由三点共线可知,存在实数使得;由平面向量基本定理知:解之得, ()若,则,又因为三点共线,所以,选题目的: (1)类比,由特殊到一般。平面直角坐标系是平面向量基本定理的特殊情况(正交基底),但在这种正交基底的情况下,向量的运算就转化为坐标运算,度量问题因此得到简化;(2)运用向量基本定理解题的基本方法。有了
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 平面 向量 24
限制150内