高中数学必修五不等式知识点+练习题含答案解析(非常详细-)(共15页).docx
《高中数学必修五不等式知识点+练习题含答案解析(非常详细-)(共15页).docx》由会员分享,可在线阅读,更多相关《高中数学必修五不等式知识点+练习题含答案解析(非常详细-)(共15页).docx(15页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上第一部分必修五不等式知识点整理第三章 不等式1.不等式的性质: 不等式的传递性: 不等式的可加性:推论: 不等式的可乘性: 不等式的可乘方性:2.一元二次不等式及其解法:.注重三者之间的密切联系。 如:0的解为:x, 则0的解为; 函数的图像开口向下,且与x轴交于点,。对于函数,一看开口方向,二看对称轴,从而确定其单调区间等。.注意二次函数根的分布及其应用. 如:若方程的一个根在(0,1)上,另一个根在(4,5)上,则有0且0且0且03.不等式的应用:基本不等式: 当a0,b0且是定值时,a+b有最小值;当a0,b0且a+b为定值时,ab有最大值。简单的线性规划:表示
2、直线的右方区域.表示直线的左方区域解决简单的线性规划问题的基本步骤是: .找出所有的线性约束条件。 .确立目标函数。 .画可行域,找最优点,得最优解。需要注意的是,在目标函数中,x的系数的符号,当A0时,越向右移,函数值越大,当A0时,越向左移,函数值越大。常见的目标函数的类型:“截距”型:“斜率”型:或“距离”型:或或画移定求:第一步,在平面直角坐标系中画出可行域;第二步,作直线 ,平移直线(据可行域,将直线平行移动)确定最优解;第三步,求出最优解;第四步,将最优解代入目标函数即可求出最大值或最小值 .第二步中最优解的确定方法:利用的几何意义:,为直线的纵截距.若则使目标函数所表示直线的纵截
3、距最大的角点处,取得最大值,使直线的纵截距最小的角点处,取得最小值;若则使目标函数所表示直线的纵截距最大的角点处,取得最小值,使直线的纵截距最小的角点处,取得最大值.第二部分必修五练习题含答案解析第一章 不等式一、选择题(本大题共12小题,每小题5分,共60分)1.设a,b,c,dR,且ab,cd,则下列结论中正确的是()A.acbd B.acbdC.acbd D.答案C解析ab,cd,acbd.2.不等式的解集是()A.(,2) B.(2,)C.(0,2) D.(,0)(2,)答案D解析由,得0,即x(2x)2或xN B.M NC.M0.M N.4.已知点P(x0,y0)和点A(1,2)在直
4、线l:3x2y80的异侧,则()A.3x02y00 B.3x02y00C.3x02y08答案D解析设f(x,y)3x2y8,则由题意,得f(x0,y0)f(1,2)0.5.不等式x2ax12a20(其中a0)的解集为()A.(3a,4a) B.(4a,3a)C.(3,4) D.(2a,6a)答案B解析方程x2ax12a20的两根为4a,3a,且4a3a,4ax0,n0.故mn2218,当且仅当mn9时取到最小值.mn的最小值为18.9.已知正三角形ABC的顶点A(1,1),B(1,3),顶点C在第一象限,若点(x,y)在ABC内部,则zxy的取值范围是()A.(1,2) B.(0,2)C.(1
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 必修 不等式 知识点 练习题 答案 解析 非常 详细 15
限制150内