高中数学说题(共5页).doc
《高中数学说题(共5页).doc》由会员分享,可在线阅读,更多相关《高中数学说题(共5页).doc(5页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上 高中数学说题“教师说题”是近年来新兴的一项教研活动。概括地说:“说题”是指执教者在精心做题的基础上,阐述对题目解答时所采用的思维方式、解题策略及依据,进而总结出经验性解题规律。说题通过“做题、想题、改题、编题、说题”等一系列活动,将教师的“教”、学生的“学”与研究“考试命题”三者结合。开展说题活动能促进教师加强对试题的研究,从而把握考题的趋势与方向,用以指导课堂教学,提高课堂教学的针对性和有效性。“说题”不同于以往的“说课”,从“说课”到“说题”,没有了“探”的束手束脚,直接进入了“究”的境界,让你有种一步跨进课的最深处的感觉,是教研活动的极大的进步。一、“说题”要
2、注重“题”的选择 美国数学家哈尔斯说:“问题是数学的心脏”。没有好的问题就没有异彩纷呈的数学,没有好的问题去引领学生的学,就没有数学课堂的精彩。教师教的“有效”要通过“好题”的深入浅出,落实学生学的“有效”。说题的内涵不是“拿嘴拿题来说”,而是“用心用题去教”。因此,说题中的“题”更要精选,这个“题”,应该是“一只产金蛋的母鸡”。二、“说题”之“五说” 教师说题不能仅停留在“从解题角度说题”这种浅表的意义上,要从“构建主义的教学观点上看说题”。我个人认为,应从这样的五个方面进行“说题”。即一说“题目立意”、二说“试题解法”、三说“数学思想方法”、四说“背景来源”、五说“拓展引申”。说 题 稿
3、东北育才学校 王成栋问题出处:2011年高考数学辽宁理科第21题已知函数(I)讨论的单调性;(II)设,证明:当时,;(III)若函数的图像与轴交于两点,线段中点的横坐标为,证明:说题目立意(1)考查求导公式(包括形如的复合函数求导)及导数运算法则;(2)考查对数的运算性质;(3)导数法判断函数的单调性;(4)考查用构造函数的方法证明不等式;(5)考查分类讨论、数形结合、转化划归思想。说解法()解:的定义域为, (解决函数问题,定义域优先的原则) (常见函数的导数公式及导数的四则运算)()若则,所以在单调递增;()若则由得,当时,当时,(导数法研究函数单调性,涉及分类讨论的思想)单调递增,在单
4、调递减.综上,当时,在单调递增; 当时,单调递增,在单调递减.归纳小结:本小问属导数中常规问题,易错点有二:易错点一是忽略函数的定义域,易错点二是分类讨论的分类标准的选取。(II)分析:函数、导数综合问题中的不等式的证明,主要是构造函数的思想,利用所构造的函数的最值,来完成不等式的证明。形如“”的不等式叫二元的不等式,二元不等式的证明主要采用“主元法”。解析:方法一:构建以为主元的函数设函数 (构造函数体现划归的思想)则,(这是本题的难点,很多学生不知要吧朝何方象化简,由于要利用导数法求最值,所以应朝有利于求导的方向化简,另外考试大纲中明确对复合函数求导,只需掌握型。) (型的复合函数求导)当
5、.故当, 方法二:构建以为主元的函数设函数,则由,解得当时,而,所以故当,归纳小结:无论是方法一还是方法二都采用了构造函数法证明不等式,解题中都体现了将不等式证明问题划归为函数最值的划归思想。()分析:判断的正负,由()中单调性,可知,即确定与的大小关系,又可等效成判断与的大小关系,根据()中不等式可确定与的大小关系,结合()中单调性,问题迎刃而解。解:由(I)可得,当的图像与x轴至多有一个交点,故,从而的最大值为不妨设 (结合图象分析更方便)由(II)得 (注意前后两问的衔接)又在单调递减所以 (利用函数性质脱掉函数符号)由(I)知, 归纳小结:本小问解决主要是建立在第()(II)问的基础之
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学
限制150内