2019届中考数学试卷分类汇编:整式与因式分解(共16页).doc
《2019届中考数学试卷分类汇编:整式与因式分解(共16页).doc》由会员分享,可在线阅读,更多相关《2019届中考数学试卷分类汇编:整式与因式分解(共16页).doc(16页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上2019届数学中考复习资料 整式与因式分解一、选择题1. (2014山东威海,第2题3分)下列运算正确的是( )A2x2x2=2xB(a2b)3=a6b3C3x2+2x2=5x2D(x3)3=x39考点:整式的除法;合并同类项;幂的乘方与积的乘方;完全平方公式分析:根据单项式除单项式的法则计算,再根据系数相等,相同字母的次数相同,以及幂的乘方,合并同类项法则求解即可解答:解:A、2x2x2=2,选项错误;B、(a2b)3=a6b3,选项错误;C、正确;D、(x3)3=x3279x2+27x,选项错误故选C点评:本题考查了单项式除单项式,以及幂的乘方,合并同类项法则,正
2、确记忆法则是关键2. (2014山东威海,第3题3分)将下列多项式分解因式,结果中不含因式x1的是( )Ax21Bx(x2)+(2x)Cx22x+1Dx2+2x+1考点:因式分解提公因式法;因式分解运用公式法分析:分别将各选项利用公式法和提取公因式法分解因式进而得出答案解答:解:A、x21=(x+1)(x1),故此选项错误;B、x(x2)+(2x)=(x2)(x1),故此选项错误;C、x22x+1=(x1)2,故此选项错误;D、x2+2x+1=(x+1)2,故此选项符合题意故选:D点评:此题主要考查了提取公因式法以及公式法分解因式,熟练掌握公式法分解因式是解题关键3. (2014山东威海,第4
3、题3分)已知x22=y,则x(x3y)+y(3x1)2的值是( )A2B0C2D4考点:整式的混合运算化简求值专题:计算题分析:原式去括号合并后,将已知等式变形后代入计算即可求出值解答:解:x22=y,即x2y=2,原式=x23xy+3xyy2=x2y2=22=0故选B点评:此题考查了整式的混合运算化简求值,熟练掌握运算法则是解本题的关键4. (2014山东枣庄,第9题3分)如图,在边长为2a的正方形中央剪去一边长为(a+2)的小正方形(a2),将剩余部分剪开密铺成一个平行四边形,则该平行四边形的面积为( ) Aa2+4B2a2+4aC3a24a4D4a2a2考点:平方差公式的几何背景分析:根
4、据拼成的平行四边形的面积等于大正方形的面积减去小正方形的面积,列式整理即可得解解答:解:(2a)2(a+2)2=4a2a24a4=3a24a4,故选:C点评:本题考查了平方差公式的几何背景,根据拼接前后的图形的面积相等列式是解题的关键5.(2014湖南怀化,第3题,3分)多项式ax24ax12a因式分解正确的是()Aa(x6)(x+2)Ba(x3)(x+4)Ca(x24x12)Da(x+6)(x2)考点:因式分解-十字相乘法等;因式分解-提公因式法分析:首先提取公因式a,进而利用十字相乘法分解因式得出即可解答:解:ax24ax12a=a(x24x12)=a(x6)(x+2)点评:此题主要考查了
5、提取公因式法以及十字相乘法分解因式,正确利用十字相乘法分解因式是解题关键6(2014湖南张家界,第4题,3分)若5x2ym与xny是同类项,则m+n的值为()A1B2C3D4考点:同类项分析:根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程等式,求出n,m的值,再相加即可解答:解:5x2ym和xny是同类项,n=2,m=1,m+n=2+1=3,故选:C点评:本题考查同类项的知识,注意掌握同类项定义中的两个“相同”:同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,因此成了中考的常考点7.(2014江西抚州,第3题,3分)下列运算准确的是解析:选C.
6、 A= a ,B= ,D=8(2014山东济南,第3题,3分)下列运算中,结果是的是A B C D【解析】由同底的幂的运算性质,可知A正确9(2014浙江杭州,第1题,3分)3a(2a)2=()A12a3B6a2C12a3D6a3考点:单项式乘单项式;幂的乘方与积的乘方分析:首先利用积的乘方将括号展开,进而利用单项式乘以单项式求出即可解答:解:3a(2a)2=3a4a2=12a3故选:C点评:此题主要考查了单项式乘以单项式以及积的乘方运算等知识,熟练掌握单项式乘以单项式运算是解题关键10. (2014年贵州黔东南) 2(4分)下列运算正确的是()Aa2a3=a6B(a2)3=a6C(a+b)2
7、=a2+b2D+=考点:完全平方公式;实数的运算;同底数幂的乘法;幂的乘方与积的乘方专题:计算题分析:A、原式利用同底数幂的乘法法则计算得到结果,即可做出判断;B、原式利用幂的乘方运算法则计算得到结果,即可做出判断;C、原式利用完全平方公式展开得到结果,即可做出判断;D、原式不能合并,错误解答:解:A、原式=a5,错误;B、原式=a6,正确;C、原式=a2+b2+2ab,错误;D、原式不能合并,错误,故选B点评:此题考查了完全平方公式,实数的运算,同底数幂的乘法,以及幂的乘方与积的乘方,熟练掌握公式及法则是解本题的关键11.(2014遵义5(3分)计算3x32x2的结果是()A5x5B6x5C
8、6x6D6x9考点:单项式乘单项式分析:根据单项式与单项式相乘,把他们的系数分别相乘,相同字母的幂分别相加,其余字母连同他的指数不变,作为积的因式,计算即可解答:解:3x32x2=6x5,故选B点评:本题考查了单项式与单项式相乘,熟练掌握运算法则是解题的关键12.(2014遵义8(3分)若a+b=2,ab=2,则a2+b2的值为()A6B4C3D2考点:完全平方公式分析:利用a2+b2=(a+b)22ab代入数值求解解答:解:a2+b2=(a+b)22ab=84=4,故选:B点评:本题主要考查了完全平方公式的应用,解题的关键是牢记完全平方公式,灵活运用它的变化式13.(2014十堰7(3分)下
9、列计算正确的是()A=B=2Ca6a2=a3D(a2)3=a6考点:同底数幂的除法;实数的运算;幂的乘方与积的乘方分析:根据二次根式的运算法则判断,开算术平方根,同底数幂的除法及幂的乘方运算解答:解:A、不是同类二次根式,不能合并,故选项错误;B、=22,故选项错误;C、a6a2=a4a3,故选项错误;D、(a2)3=a6正确故选:D点评:本题主要考查了二次根式的运算法则判断,开算术平方根,同底数幂的除法及幂的乘方运算熟记法则是解题的关键14.(2014娄底2(3分)下列运算正确的是()Ax2x3=x6B(x3)3=x9Cx2+x2=x4Dx6x3=x2考点:同底数幂的除法;合并同类项;同底数
10、幂的乘法;幂的乘方与积的乘方分析:根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;幂的乘方法则:底数不变,指数相乘;合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;同底数幂的除法法则:底数不变,指数相减可得答案解答:解:A、x2x3=x5,故原题计算错误;B、(x3)3=x9,故原题计算正确;C、x2+x2=2x2,故原题计算错误;D、x6x3=x3,故原题计算错误;故选:B点评:此题主要考查了同底数幂的乘、除法,幂的乘方,以及合并同类项的法则,关键是掌握各种计算法则,不要混淆15.(2014娄底12(3分)按照如图所示的操作步骤,若输入的值为3,则输出
11、的值为55考点:代数式求值专题:图表型分析:根据运算程序列式计算即可得解解答:解:由图可知,输入的值为3时,(32+2)5=(9+2)5=55故答案为:55点评:本题考查了代数式求值,读懂题目运算程序是解题的关键 16.(2014年湖北咸宁3(3分))下列运算正确的是()A+=B(ab)2=a2b2C(2)0=1D(2ab3)2=2a2b6考点:完全平方公式;实数的运算;幂的乘方与积的乘方;零指数幂分析:根据二次根式的加减,积的乘方,等于先把每一个因式分别乘方,再把所得的幂相乘;完全平方公式,及0次幂,对各选项分析判断后利用排除法求解解答:解:A、和不是同类二次根式,不能加减,故本选项错误;B
12、、(ab)2=a22ab+b2故本选项错误;C、(2)0=1故本选项正确;D(2ab3)2=8a2b6,故本选项错误故选:C点评:本题考查了积的乘方的性质,完全平方公式,0次幂以及二次根式的加减,是基础题,熟记各性质与完全平方公式是解题的关键17.(2014江苏盐城,第2题3分)下列运算正确的是()Aa3a2=a5Ba6a2=a3C(a3)2=a5D(3a)3=3a3考点:同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方分析:分别根据同底数幂的除法,熟知同底数幂的除法及乘方法则、合并同类项的法则、幂的乘方与积的乘方法则对各选项进行计算即可解答:解:A、原式=a2+3=a5,故本选项正确;B、
13、原式=a62=a4,故本选项错误;C、原式=a6,故本选项错误;D、原式=9a3,故本选项错误故选D点评:本题考查的是同底数幂的除法,熟知同底数幂的除法及乘方法则、合并同类项的法则、幂的乘方与积的乘方法则是解答此题的关键18. (2014山东临沂,第4题3分)下列计算正确的是()Aa+2a=3a2B(a2b)3=a6b3C(am)2=am+2Da3a2=a6考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法分析:分别进行合并同类项、积的乘方和幂的乘方、同底数幂的乘法运算,然后选择正确答案解答:解:A、a+2a=3a,故本选项错误;B、(a2b)3=a6b3,故本选项正确;C、(am)2=a2
14、m,故本选项错误;D、a3a2=a5,故本选项错误故选B点评:本题考查了积的乘方和幂的乘方、同底数幂的乘法、合并同类项等知识,掌握运算法则是解答本题的关键19. (2014山东临沂,第12题3分)请你计算:(1x)(1+x),(1x)(1+x+x2),猜想(1x)(1+x+x2+xn)的结果是()A1xn+1B1+xn+1C1xnD1+xn考点:平方差公式;多项式乘多项式专题:规律型分析:已知各项利用多项式乘以多项式法则计算,归纳总结得到一般性规律,即可得到结果解答:解:(1x)(1+x)=1x2,(1x)(1+x+x2)=1+x+x2xx2x3=1x3,依此类推(1x)(1+x+x2+xn)
15、=1xn+1,故选A点评:此题考查了平方差公式,多项式乘多项式,找出规律是解本题的关键20. (2014山东淄博,第6题4分)当x=1时,代数式ax33bx+4的值是7,则当x=1时,这个代数式的值是()A7B3C1D7考点:代数式求值菁优网专题:整体思想分析:把x=1代入代数式求值a、b的关系式,再把x=1代入进行计算即可得解解答:解:x=1时, ax33bx+4=a3b+4=7,解得a3b=3,当x=1时, ax33bx+4=a+3b+4=3+4=1故选C点评:本题考查了代数式求值,整体思想的利用是解题的关键21(2014四川凉山州,第3题,4分)下列计算正确的是( )Aaa=a2B(a)
16、3=a3C(a2)3=a5Da0=1 考点:幂的乘方与积的乘方;同底数幂的乘法;零指数幂分析:根据同底数幂的乘法,可判断A,根据积的乘方,可判断B,根据幂的乘方,可判断C,根据非0得0次幂,可判断D解答:解:A、底数不变指数相加,故A正确;B、(a)3=a3,故B错误;C、底数不变指数相乘,故C错误;D、a=0时错误,故D错误;故选:A点评:本题考查了幂的乘方与积的乘方,积的乘方等于每个因式分别乘方,再把所得的幂相乘22(2014四川泸州,第2题,3分)计算x2x3的结果为()A2x2Bx5C2x3Dx6解答:解:原式=x2+3=x5故选:B点评:本题考查了同底数幂的乘法,底数不变指数相加是解
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2019 中考 数学试卷 分类 汇编 整式 因式分解 16
限制150内