机械手的设计.doc
《机械手的设计.doc》由会员分享,可在线阅读,更多相关《机械手的设计.doc(35页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上1 前言 1.1 国内外发展概况机械手首先是美国开始研制的。1958年美国联合控制公司研制出第一台机械手。它的结构是:机体上安装一个回转长臂,顶部装有电磁块的工件抓放机构,控制系统是示教型的。1962年,美国联合控制公司在上述方案的基础上又试制成一台数控示教再现型机械手。商名为Unimate(即万能自动)。运动系统仿照坦克炮塔,臂可以回转、俯仰、伸缩、用液压驱动;控制系统用磁鼓作为存储装置。不少球坐标通用机械手就是在这个基础上发展起来的。同年该公司和普鲁曼公司合并成立万能自动公司,专门生产工业机械手。1962年美国机械制造公司也实验成功一种叫Vewrsatran机械手
2、。该机械手的中央立柱可以回转、升降采用液压驱动控制系统也是示教再现型。虽然这两种机械手出现在六十年代初,但都是国外工业机械手发展的基础。 1978年美国Unimate公司和斯坦福大学,麻省理工学院研究Unimate-Vicarm型工业机械手,装有小型电子计算机进行控制,用于装配作业,定位误差小于1毫米。联邦德国机械制造业是从1970年开始应用机械手,主要用于喷涂、起重运输、焊接和设备的上下料等作业。联邦德国KnKa公司还生产一种喷涂机械手,采用关节式结构和程序控制。日本是机械手发展最快、应用最多的国家。自1969年从美国引进两种机械手后大力从事机械手的研究。前苏联自六十年代开始发展和应用机械手
3、,至1977年底,其中一半是国产,一半是进口。目前,工业机械手大部分还属于第一代,主要依靠工人进行控制;改进的方向主要是降低成本和提高精度。第二代机械手正在加紧研制。它设有微型电子计算控制系统,具有视觉、触觉能力,甚至听、想的能力。研究安装各种传感器,把感觉到的信息反馈,是机械手具有感觉机能。第三代机械手则能独立完成工作中过程中的任务。它与电子计算机和电视设备保持联系,并逐步发展成为柔性制造系统FMS和柔性制造单元FMC中的重要一环。1.1.1 研究现状自上世纪90年代以来,随着计算机技术、微电子技术和网络技术的迅猛发展,机器人技术也得到了飞速发展。原本用于生产制造的工业机器人水平不断提高,各
4、种用于非制造业的先进机器人系统也有了长足的进展。机器人的各种功能被相继开发并得到不断增强,机器人的种类不断增多,机器人的应用领域也从最初的工业控制拓展到各行各业,从军事到民用,从天上到地下,从工业到农业、林、牧、渔,从科研探索到医疗卫生行业,从生产领域到娱乐服务行业,甚至还进入寻常百姓家。工业机器人的结构形式很多,常用的有直角坐标式、柱面坐标式、球面坐标式、多关节坐标式、伸缩式、爬行式等等,根据不同的用途还在不断发展之中。喷涂机器人根据不同的应用场合可采取不同的结构形式,但目前用得最多的是模仿人的手臂功能的多关节式的机器人,这是因为多关节式机器人的手臂灵活性最大,可以使喷枪的空间位置和姿态调至
5、任意状态,以满足喷涂需要。理论上讲,机器人的关节愈多,自由度也愈多,关节冗余度愈大,灵活性愈好;但同时也给机器人逆运动学的坐标变换和各关节位置的控制带来复杂性。因为喷涂过程中往往需要把以空间直角坐标表示的工件上的喷涂位置转换为喷枪端部的空间位置和姿态,再通过机器人逆运动学计算转换为对机器人每个关节角度位置的控制,而这一变换过程的解往往不是唯一的,冗余度愈大,解愈多。如何选取最合适的解对机器人喷涂过程中运动的平稳性很重要。不同的机器人控制系统对这一问题的处理方式不尽相同。 1.1.2 发展趋势工业机器人技术发展与应用水乳交融。在第一代工业机器人普及的基础上,第二代已经推广,成为主流安装机型,第三
6、代智能机器人已占有一定比重。以应用为龙头拉动工业机器人技术的发展,其重点发展领域与技术特点体现在下述方面:(1) 机械结构(a) 以关节型为主流,80年代发明的适用于装配作业的平面关节型机器人约占总量的l3(目前世界工业机器人总数约为台),90年代初开发的适用于窄小空间、快节奏、360度全工作空间范围的垂直关节型机器人大量用于喷涂、焊接和上下料。(b) 应3K(炼钢、炼铁、铸锻)行业和汽车、建筑、桥梁等行业需求,喷涂机器人应运而生。(c) 己普遍采用CAD、CAM等技术用于设计、仿真与制造中。(2) 控制技术(a) 大多数采用32位CPU,控制轴多达27轴,NC技术和离线编程技术大量采用。(b
7、) 协调控制技术日趋成熟,实现了多手与变位机、多机器人的协调控制,正逐步实现多智能体的协调控制。(c) 基于PC的开放式结构控制系统由于成本低并具有标准现场网络功能,己成为一股潮流。(3) 驱动技术上世纪80年代发展起来的AC伺服驱动已成为主流驱动技术用于工业机器人中。日本23家机器人公司于1998年生产的168种型号机器人产品,其中采用AC伺服驱动的有156种,占93.4。直接驱动技术则广泛用于装配机器人中。新一代的伺服电机与基于微处理器的智能伺服控制器相结合,已由日本FANUC 公司开发并用于工业机器人中;在远程控制中已采用了分布式智能驱动新技术。(4) 智能化的传感器多有应用在上述167
8、种机型中,装有视觉传感器的有94种,占56.3,不少机器人装有两种传感器,有些机器人留下了多种传感器接口。(5) 高速、高精度、多功能化目前所知最快的装配机器人最大合成速度为16.5m/s;高精度机器人的位置重复性为正负0.01mm.有一种大直角坐标喷涂机器人,其最大合成速度达80m/s;而另一种并联机构的NC机器人,其位置重复性达l um。90年代末的机器人一般都具有两、三种功能。最近瑞典Neos公司开发出一种高精度、高可靠性的可喷涂、切割、钻孔、铣削、磨削、装配、搬运的多功能机器人,用于多家著名汽车厂和飞机公司。(6) 集成化与系统化1998年ABB公司推出IRbl400系列小机器人,其循
9、环时间只有0.4s,控制器包括软件、高压电、驱动器、用户接口等皆集成于一柜,只有洗衣机变换器那样大小。FANUC公司2000年9月宣称它的控制器为世界最小。工业机器人的应用从单机、单元向系统发展。多达百台以上的机器人群与微机及周边智能设备和操作人员形成一个大群体(多智能体)。跨国大集团的垄断和全球化的生产将世界众多厂家的产品联接在一起,实现了标准化、开放化、网络化的“虚拟制造”,为工业机器人系统化的发展推波助澜。在国内主要是逐步扩大应用范围,重点发展喷涂、铸造、热处理方面的机械手,以减轻劳动强度,改善工人作业条件,在应用专用机械手的同时,相应的发展通用机械手,有条件的还要研制示教式机械手、计算
10、机控制机械手和组合机械手等。将机械手各运动构件,如伸缩、摆动、升降、横移、俯仰等机构以及根据不同类型的加紧机构,设计成典型的通用机构,所以便根据不同的作业要求选择不同类型的基加紧机构,即可组成不同用途的机械手。既便于设计制造,有便于更换工件,扩大应用范围。同时要提高速度,减少冲击,正确定位,以便更好的发挥机械手的作用。此外还应大力研究伺服型、记忆再现型,以及具有触觉、视觉等性能的机械手,并考虑与计算机连用,逐步成为整个机械制造系统中的一个基本单元。在国外机械制造业中工业机械手应用较多,发展较快。目前主要用于机床、横锻压力机的上下料,以及点焊、喷漆等作业,它可按照事先指定的作业程序来完成规定的操
11、作。此外,国外机械手的发展趋势是大力研制具有某种智能的机械手。使它具有一定的传感能力,能反馈外界条件的变化,并作相应的变更。如位置发生稍许偏差时,即能更正并自行检测,重点是研究视觉功能。目前已经取得一定成绩。视觉功能即在机械手上安装有电视照相机和光学测距仪(即距离传感器)以及微型计算机。工作是电视照相机将物体形象变成视频信号,然后送给计算机,以便分析物体的种类、大小、颜色和位置,并发出指令控制机械手进行工作。更重要的是将机械手、柔性制造系统和柔性制造单元相结合,从而根本改变目前机械制造系统的人工操作状态。1.2 课题来源本设计的课题是喷涂机器人臂部与手部的设计,主要是臂部和腕部的结构设计及其零
12、件设计。此课题来源于生产实际,是针对目前手工喷涂效率低,操作环境差,而且对操作员技术熟练程度要求高,因此采用机器人技术,可以实现喷涂工作的柔性自动化,提高产品质量与劳动生产率,实现生产过程的自动化,改善劳动条件。1.3 技术要求及预期效果根据设计要达到以下要求:对喷涂机器人机械臂结构及小臂自重平衡系统进行设计。喷涂工件外形尺寸800mm x500mm x500mm(长x宽x髙);机械臂的结构尺寸为:大臂长约700mm左右,小臂长约800mm左右,臂杆横截面尺寸 100mm x100mm;手部尺寸约150mm左右;小臂摆角80(上摆30,下摆50)。对影响自重平衡的主要结构参数进行优化设计与计算
13、,示教时的不平衡力2kg。此次设计的垂直多关节机器人可以实现大臂小臂的旋转,手腕的旋转与摆动。此装置应用在喷涂生产线上将大大提高生产效率和质量,降低了工人的劳动强度,能够带来可观的经济效益。1.4 本课题要解决的主要问题及设计总体思路本课题要解决的问题有以下二个:(1) 手腕处于手臂末端,需减轻手臂的载荷,力求手腕部的结构紧凑,减少重量和体积。(2) 设计小臂的平衡系统,使小臂在撤除驱动力的情况不会发生突发性转动。针对上述问题有了以下设计思路:(1) 手腕部机构的驱动装置采用分离传动,采用传动轴,将驱动器安置在小臂的后端。(2) 驱动电机经联轴器与传动轴驱动一对圆柱齿轮和一对圆锥齿轮传动来带动
14、手腕作偏摆运动。(3) 手部的驱动电机安装在小臂内部,以此来减轻手部的重量,让手部能够作灵活的运动。(4) 对于小臂平衡是采用重力平衡的方式,及在小臂末端放置铁块。2 总体方案设计2.1 机械结构类型的确定为实现总体机构在空间位置提供的4个自由度,可以有不同的运动组合,根据本课题的要求现可以将其设计成关节型机器人。关节型又称回转坐标型,这种机器人的手臂与人体上肢类似,其前三个关节都是回转关节,这种机器人一般由立柱和大小臂组成,立柱与大臂间形成肩关节,大臂和小臂间形成肘关节,可使大臂作回转运动和使大臂作俯仰摆动,小臂作俯仰摆动。其特点是工作空间范围大,动作灵活,通用性强,工艺操作精度高。图2.1
15、 整体原理图2.2 传动方案的确定 图2.1是机器人小臂与腕部机械传动系统的简图。机械传动系统共有4个齿轮,为了实现在同一平面改变传递方向90,有2个齿轮为圆锥齿轮,有利于简化系统运动方程式的结构形式。如果采用蜗轮蜗杆结构,则必然以空间交叉方式变向,就不利于简化系统运动方程式的结构形式。其中有2个齿轮为直齿圆柱齿轮,用于减速。小臂的结构形式是由内部铝制的整体铸件骨架与外表面很薄的铝板壳相互胶接而成。关节电机安装在小臂后面用于带动传动轴与齿轮的旋转来实现手腕的摆动。图2.2小臂腕部传动原理图2.3 工作空间的确定 工作空间是机器人学中一个重要的研究领域。但在实际应用中,可以简化这一问题,把工作空
16、间看作是机器人操作机正常运行时,手腕参考点(如定位机构的轴线正交,取交点为参考点)在空间的活动范围,或者说该点可达位置在空间所占有的体积。根据关节型机器人的结构确定工作空间,工作空间是指机器人正常工作运行时,手腕参考点能在空间活动的最大范围,是机器人的主要技术参数。图2.3 机器人的工作空间位置图2.4 手腕结构的确定手腕是操作机的小臂和末端执行器之间的联接部件。其功用是利用自身的活动度确定被喷涂物体的空间姿态,也可以说是确定末端执行器的姿态。故手腕也称作机器人的姿态机构。对一般商用机器人,末杆(即与末端执行器相联接的杆)都有独立驱动的自转功能,若该杆再能在空间取任意方位,那么与之相联的末端执
17、行器就可在空间取任意姿态,即达到完全灵活的境地。对于任一杆件的姿态(即方向),可用两个方位角确定,如图2.4所示。图2.4 末杆姿态示意图 -大臂-小臂-末杆 在图2.4中末杆Ln的图示姿态可以看作是由处于方向的原始位置先绕在平面内转角,然后再向上转角得到的。可见是由两角决定了末杆的方向(姿态)。从理论上讲,如果,则末杆在空间取任意方向。如果末杆的自转角(即)也满足,就说该操作机具有最大的灵活度,即可自任意方向抓取物体并可把抓取的物体在空间摆成任意姿态。为了定量的说明操作机转动的灵活程度,定义组合灵度(dex)为: (2-1)上式取加的形式但一般不进行加法运算,因为分开更能表示机构的特点。腕结
18、构最重要的评价指标就是dex值。若为三个百分之百,该手腕就是最灵活的手腕。一般说来、的最大值取,而值可取的更大一些,如果拧螺钉,最好无上限。 腕结构是操作机中最为复杂的结构,而且因传动系统互相干扰,更增加了腕结构的设计难度。腕部的结构设计要求是:重量轻,dex的组合值必须满足工作要求并留有一定的裕量(约5%-10%),传动系统结构简单并有利于小臂对整机的静力平衡。2.5 驱动装置的选择2.5.1 机器人驱动方案的分析和选择通常的机器人驱动方式有以下三种:(1) 电动驱动电动驱动器是目前使用最广泛的驱动器。它的能源简单,速度变化范围大,效率高,但它们多与减速装置相连,直接驱动比较困难。电动驱动器
19、又分为直流(DC)、交流(AC)伺服电机驱动。后者多为开环控制,控制简单但功率不大,多用于低精度小功率机器人系统。直流伺服电机有很多优点,但它的电刷易磨损,且易形成火花。随着技术的进步,近年来交流伺服电机正逐渐取代直流伺服电机而成为机器人的主要驱动器。(2) 液压驱动器液压驱动的主要优点是功率大,结构简单,可省去减速装置,能直接与被驱动的杆件相连,响应快,伺服驱动具有较高的精度,但需要增设液压源,而且易产生液体泄露,故液压驱动目前多用于特大功率的机器人系统。(3) 气动驱动器气动驱动器的能源,结构都比较简单,但与液压驱动器相比,同体积条件下功率较小(因压力低),而且速度不易控制,所以多用于精度
20、不高的点位控制系统 。通过比较以上三种驱动方式,因此本课题的机器人将采用电动驱动器中的直流伺服电动机与步进电动机。因为直流伺服电机具有良好的调速特性,较大的启动力矩,相对功率大及快速响应等特点,并且控制技术成熟。其安装维修方便,成本低。而交流伺服电机结构简单,运行可靠,使用维修方便,与步进电机相比价格要贵一些。2.5.2 手腕电机的选择(1) 转腕及腕部内电机的选择手腕的最大负荷重量初估腕部的重量,最大运动速度V=1m/s,则:功率;取安全系数为1.2,考虑到传动损失和摩擦,最终的电机功率又因为标准周期T=0.3sec,即;则所需电机的输入转速为;根据设计要求转腕部分的电机后紧跟输出轴和联轴器
21、,直接带动手腕旋转,故在此选择转速较低的型号电机,又由于要求手腕的重量较轻,便于灵活的实现运动,因此要求腕部内电机较小,故选SZYX81宽调速永磁直流伺服电机,其安装尺寸为42mm,电机重量仅为0.35Kg,详细参数见表2-1。表2-1 SZYX81宽调速永磁直流伺服电机技术参数规格型号额定功率额定转矩额定电压SZYX810.1KW0.35N.M24V最高电流最高转速允许转速差10%转动惯量2.7A800r/min50100kg.cm.s该电机具有精度高,响应快,调速范围宽,加速度大,力矩波动小,线性度好,过载能力强等特点。2.6 传动比的确定及分配2.6.1. 传动比的确定由电动机的转速可知
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 机械手 设计
限制150内