《三相异步电动机的设计(共25页).doc》由会员分享,可在线阅读,更多相关《三相异步电动机的设计(共25页).doc(25页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上摘 要三相异步电动机以其低成本、高可靠性和易维护等特点,广泛应用于各工业领域,但是三相异步电动机在额定电压全压启动时,启动电流很大,约为额定电流的57倍,会对电网造成冲击,影响其它设备运行。启动转矩约为额定转矩的两倍。加剧机械结构磨损,基至损坏设备。特别是大功率的三相异步电机影响尤其明显。为了解决电机启动时产生的大冲击电流,需要对电动机进行软启动来降低启动电流。三相异步电机直接起动存在较大的冲击电流,消耗了大量电能。直接起动方式虽然启动简单,但是电机在直接起动时会产生很大的瞬间电流冲击,造成许多危害,如过大的热应力极易导致绕组损坏,造成绕组绝缘提前老化,从而降低电动机
2、的使用寿命;过大的启动电流将使感应电动机的启动转矩冲击很大;过大的启动电流还造成对电网的冲击,造成能源浪费,传统降压启动方法无法从根本上解决这些问题。因此研究三相异步电动机的软启动,以此来克服上述电动机启动时的缺点,是很有现实意义和经济效益的。关键词:三相异步电动机;晶闸管;直接起动;冲击电流;软启动 目 录专心-专注-专业1. 绪论1.1 三相异步电动机软启动器设计背景三相异步电动机广泛应用于拖动风机、皮带机、水泵、真空泵、潜水泵及压缩机等,故电机的起动、控制、运行及安全可靠性显得十分重要,尤其是大功率电机的起动及系统的保护。针对电机启动的优良性、控制的可靠性、保护功能的全面性,设计一种软启
3、动控制系统,从而改善电机启动效果,提高系统保护与控制功能的完善性与可靠性。当电机功率较大时,须采用降压起动,故本文所设计的控制系统是针对广泛使用的大功率三相电机降压启动进行设计。我国软启动技术起步于上世纪80年代早期,目前生产电机启动器的厂家很多,先后也推出了多种品牌的软启动器。但由于国内自主开发和生产的能力相对较弱,对国外产品的依赖还是很严重。在技术上和可靠性上与国外同类产品尚有一定的差距。所以在整个软启动器市场上,占据统治地位的还是国外产品,国内产品所占的份额还是很低。目前市场上生产的软启动器主要以机械式和三相反并联晶闸管方式为主。机械式启动器是目前使用比较广泛的启动方式,但它是有级启动,
4、会产生二次冲击电流,启动电流仍然为标称电流的34倍,且有体积大、噪音大、维护费用高、无法适应恶劣环境等诸多弊端。近三十年来,随着电力电子技术的发展,使无电弧开关和连续调节电流成为可能。电力半导体开关器件具有无磨损、寿命长、功耗小等特点,结合现代控制理论及微机控制技术,为实现电机的软启动提供了全新的思路。要突破传统的启动方式,是离不开电力电子技术和微机控制技术的发展的。目前在国外,发达国家的电动机软启动产品主要是固态软启动装置晶闸管软启动和兼作软启动的变频器。在生产工艺兼有调速要求时,采用变频装置。在没有调速要求使用的场合下,启动负载较轻时一般采用晶闸管软启动。在重载或负载功率特别大的时候,才使
5、用变频软启动。晶闸管软启动装置是发达国家软启动的主流产品,各知名电气公司均有自己晶闸管软启动的品牌,在其功能上又各具特色。例如GE公司生产的ASTAT智能电机软启动器;ABB公司生产的PST、PSTB系列电机软启动器;施耐德公司的ATS46软启动器;德国SIEMENS公司的3RW22 SIKOSTART软启动器等等。目前,国外对晶闸管三相交流调压电路的研究己经从对控制电压、控制电机电流的开环、闭环方式,发展到通过建立比较准确实用的数学模型,找到适用于三相交流调压电路电机负载的控制方法,从而使三相交流调压电路电机负载性能更优。另一方面,随着电力电子技术的发展,异步电动机向更加可靠、方便性好、小型
6、化方向发展。1.2 软启动器介绍软启动器本质上是一种直流调压装置,用来实现软启动、软停车、实时监测以及各种保护功能。为了保证系统安全可靠地运行,可以充分发挥单片机的强大控制功能,由主控制电路对系统的关键器件和关键参数,例如过压、欠压、过流、过载、等进行实时监控。随着数字直流PWM调压技术的应用,以及采用高性能的单片机作为系统的控制核心,可以使软启动器具有控制快速准确、响应快、运行稳定、可靠等优点。在三相异步电动机不宜采用直接启动的时候,可以考虑采用定子串电阻或串电抗器启动、Y-启动、自耦变压器降压启动、转子串电阻启动、晶闸管电子软启动、分级变频软启动、两相变频调压软启动等方法。软启动器是一种集
7、电机软起动、软停车、轻载节能和多种保护功能于一体的新颖电机控制装置,国外称为Soft Starter。它的主要构成是串接于电源与被控电机之间的三相反并联闸管及其电子控制电路。运用不同的方法,控制三相反并联闸管的导通角,使被控电机的输入电压按不同的要求而变化,就可实现不同的功能。软启动器以体积小,转矩可以调节、启动平稳冲击小并具有软停机功能等优点得到了越来越多的应用,大有取代传统的自耦减压、星-角等启动器的趋势.由于软启动器是近年来新发展起来的启动设备,在设计、安装、调试和使用方面还缺少指导性的规范与规程.我们在软启动器的安装、调试工作中也遇到了一些实际技术问题。例如:不同启动负载软启动器的选型
8、、软启动冲击电流与过流保护定值的配合、软启动设备容量与变压器容量的关系等问题。 (1)能使电机起动电压以恒定的斜率平稳上升,起动电流小,对电网无冲击电流,减小负载的机械冲击。(2)起动电压上升斜率可调,保证了起动过程的平滑性,起动电压可依据不同的负载在30%70%Ue(Ue为额定电压)范围内连续可调。(3)可以根据不同的负载设定起动时间。(4)起动器还具有可控硅短路保护、缺相保护、过热保护、欠压保护。2三相异步电动机启动控制的研究交流三相异步电动机的传统启动技术,如定子串电阻/电抗器启动、自耦变压器降压启动、星形-三角形降压启动、转子串电阻或频敏变阻器启动等,在交流电动机启动技术发展过程中都有
9、过重要应用。但随着晶闸管技术的发展,三相交流调压软启动器因为具有性能良好、产品多样、电压可连续调节以及转矩或电流可闭环控制等优点,使得电子软启动器得到了深入而广泛的发展,成为软启动市场中的主流产品。2.1 三相异步电动机的启动过程为了研究三相异步电动机的启动时的电压、电流、转矩等变量的关系,进而分析异步电机启动时的电流、启动转矩和所外加电压的关系,就要研究电机的数学模型。对于电动机的软启动而言,多采用基于集中参数等效电路的数学模型。在不改变异步电动机定子绕组中的物理量和异步电机的电磁性能的前提下,经频率和绕组的计算,把异步电动机转子绕组的频率、相数、每相有效串联匝数都归算成和定子绕组一样,即可
10、用归算过的基本方程式推导出异步电动机的等效电路。三相异步电动机的T形稳态等效电路如图2-1所示:图2-1 异步电动机的等效电路其中,r1为定子绕组的电阻,x1为定子绕组的漏电抗,r2为归算到定子方面的转子绕组的电阻,x2为归算到定子方面的转子绕组的漏抗。rm代表与定子铁心损耗所对应的励磁电阻,xm代表与主磁通相对应的铁心磁路的励磁电抗。U1为定子电压向量,E1为定子感应电动势向量,i1为定子电流向量,im为磁电流向量。2.2 三相异步电机的启动方法三相异步电动机的启动方法主要有直接启动、传统减压启动和软启动三种启动方法。下面就分别做详细介绍。直接启动直接启动,也叫全压启动。启动时通过一些直接启
11、动设备,将全部电源电压(即全压)直接加到异步电动机的定子绕组,使电动机在额定电压下进行启动。一般情况下,直接启动时启动电流为额定电流的38倍,启动转矩为额定转矩的12倍。根据对国产电动机实际测量,某些笼型异步电动机启动电流甚至可以达到812倍。直接启动的启动线路是最简单的,如图2-2所示。然而这种启动方法有诸多不足。对于需要频繁启动的电动机,过大的启动电流会造成电动机的发热,缩短电动机的使用寿命;同时电动机绕组在电动力的作用下,会发生变形,可能引起短路进而烧毁电动机;另外过大的启动电流,会使线路电压降增大,造成电网电压的显著下降,从而影响同一电网的其他设备的正常工作,有时甚至使它们停下来或无法
12、带负载启动。这是因为Ts及Tm均与电网电压的平方成正比,电网电压的显著下降,可使Ts及Tm 均下降到低于Tz。一般情况下,异步电动机的功率小于75kW时允许直接启动。如果功率大于75kW,而电源总容量较大,能符合下式要求的话,电动机也可允许直接启动。如果不能满足上式的要求,则必须采用减压启动的方法,通过减压,把启动电流Ist限制到允许的数值。图2-2 直接启动原理图传统减压启动减压启动是在启动时先降低定子绕组上的电压,待启动后,再把电压恢复到额定值。减压启动虽然可以减小启动电流,但是同时启动转矩也会减小。因此,减压启动方法一般只适用于轻载或空载情况。传统减压启动的具体方法很多,这里介绍以下三种
13、减压启动的方法:(1)定子串接电阻或电抗启动定子绕组串电阻或电抗相当于降低定子绕组的外加电压。由三相异步电动机的等效电路可知:启动电流正比于定子绕组的电压,因而定子绕组串电阻或电抗可以达到减小启动电流的目的。但考虑到启动转矩与定子绕组电压的平方成正比,启动转矩会降低的更多。因此,这种启动方法仅仅适用于空载或轻载启动场合。对于容量较小的异步电动机,一般采用定子绕组串电阻降压;但对于容量较大的异步电动机,考虑到串接电阻会造成铜耗较大,故采用定子绕组串电抗降压启动。如图2-3所示:当启动电机时,合上开关Q,交流接触器KM断开,使电源经电阻或电抗R流进电机。当电机启动完成时KM吸合,短接电阻或电抗R。
14、图2-3 定子串电阻或电抗启动原理图(2)星-三角形(丫-)启动星-三角形启动法是电动机启动时,定子绕组为星形(丫)接法,当转速上升至接近额定转速时,将绕组切换为三角形()接法,使电动机转为正常运行的一种起动方式。星-三角形起动方法虽然简单,但电动机定子绕组的六个出线端都要引出来,略显麻烦。图2-4为星-三角形起动法的原理图。接触器KM2和KM3互锁,即其中一个闭合时,必须保证另一个断开。KM2闭合时,定子绕组为星形(丫)接法,使电动机起动。切换至KM3闭合,定子绕组改为三角形()接法,电动机转为正常运行。由控制电路中的时间继电器KT确定星-三角切换的时间。定子绕组接成星形连接后,每相绕组的相
15、电压为三角形连接(全压)时的l/3,故星-三角形起动时起动电流及起动转矩均下降为直接起动的13。由于起动转矩小,该方法只适合于轻载起动的场合。图2-4 星-三角形起动法的原理图(3)自耦变压器起动自耦变压器起动法就是电动机起动时,电源通过自耦变压器降压后接到电动机上,待转速上升至接近额定转速时,将自耦变压器从电源切除,而使电动机直接接到电网上转化为正常运行的一种起动方法。图2-5所示为自耦变压器起动的自动控制主回路。控制过程如下:合上空气开关Q接通三相电源。按启动按钮后KM1线圈通电吸合并自锁,其主触头闭合,将自耦变压器线圈接成星形,与此同时由于KM1辅助常开触点闭合,使得接触器KM2线圈通电
16、吸合,KM2的主触头闭合由自耦变压器的低压抽头(例如65)将三相电压的65接入电动。当时间继电器KT延时完毕闭合后,KM1线圈断电,使自耦变压器线圈封星端打开;同时KM2线圈断电,切断自耦变压器电源,使KM3线圈得电吸合,KM3主触头接通电动机在全压下运行。自耦变压器一般有65和80额定电压的两组抽头。若自耦变压器的变比为k,与直接起动相比,采用自耦变压器起动时,其一次侧起动线电流和起动转矩都降低到直接起动的lk2。自耦变压器起动法不受电动机绕组接线方式(丫接法或接法)的限制,允许的起动电流和所需起动转矩可通过改变抽头进行选择,但设备费用较高。图2-5 异步电动机的自耦变压器起动法自耦变压器起
17、动适用于容量较大的低压电动机作减压起动用,应用非常广泛,有手动及自动控制线路。其优点是电压抽头可供不同负载起动时选择;缺点是质量大、体积大、价格高、维护检修费用高。软启动软起动可分为有级和无级两类,前者的调节是分档的,后者的调节是连续的。在电动机定子回路中,通过串入限流作用的电力器件实现软起动,叫做降压或者限流软起动。它是软起动中的一个重要类别。按限流器件不同可分为:以电解液限流的液阻软起动;以磁饱和电抗器为限流器件的磁控软起动;以晶闸管为限流器件的晶闸管软起动。晶闸管软起动产品问世不过30年左右的时间,它是当今电力电子器件长足进步的结果。10年前,电气工程界就有人预言,晶闸管软起动将引发软起
18、动行业的一场革命。目前在低压(380V)内,晶闸管软起动产品价格已经下降到液阻软起动的大约2倍,甚至更低。而其主要性能却优于液阻软起动。与液阻软起动相比,它的体积小、结构紧凑,维护量小,功能齐全,菜单丰富,起动重复性好,保护周全,这些都是液阻软起动无法比拟的。但是晶闸管软起动产品也有缺点。一是高压产品的价格太高,是液阻软起动产品的510倍,二是晶闸管引起的高次谐波比较严重。2.3 软起动的原理及分析2.3.1 晶闸管调压原理晶闸管的控制方式有两种:一是相位控制,即通过控制晶闸管的导通角来调压;二是周波控制,即把晶闸管作为静止接触器,交替的接通与切断几个周波的电源电压,用改变接通时间与切断时间之
19、比来控制输出电压的有效值,从而达到调压的目的。但周波控制用在异步电机定子上时,通断交替的频率不能太低,一方面会引起电动机转速的波动,另一方面每次接通电流就相当于一次异步电动机的重起动过程。当电源切断时,电动机气隙中的磁场将由转子中的瞬态电流来维持,并随着转子而旋转,气隙磁场在定子绕组中感应的电动势频率将有所变化,当断流时问隔较长时,这个旋转磁场在定子中感应的电势和重新接通时的电源电压在相位上可能会有很大的差别,这样就会出现较大的电流冲击,可能危及晶闸管的安全。故在异步电动机的调压控制中,晶闸管调压一般采用相位控制。采用相位控制时,输出电压波形已不是正弦波,经分析可知,输出电压不含偶次谐波,奇次
20、谐波中以三次谐波为主要成分。谐波在异步电机中会引起附加损耗,产生转矩脉动等不良影响。此外,由于异步电机是感性负载,从电力电子学中可以知道,当晶闸管交流调压回路带有感性负载时,只有当移相角大于负载的功率因数角时,才能起到调压的作用。当时,电流导通的时间将始终保持在180。其情况与=0时一样,相控不起任何调压作用,甚至在晶闸管触发脉冲不够宽的情况下,出现只有一个方向上的晶闸管工作,负载上出现直流分量,对晶闸管造成危害。为了保证晶闸管的安全,在使用相控晶闸管电路时采用宽脉冲触发,移相范围限制在-E1(-15V),V5又重新导通。使V7、V8截止,输出脉冲终止。脉冲前沿由V4导通时刻确定,脉冲宽度与反
21、向充电回路时间常数R11C3有关。电路的触发脉冲由脉冲变压器TP二次侧输出,其一次绕组接在V8集电极电路中。2、锯齿波的形成和脉冲移相环节3、同步环节4、双窄脉冲形成环节内双脉冲电路由V5、V6构成“或”门。当V5、V6都导通时,V7、V8都截止,没有脉冲输出,只要V5、V6有一个截止,都会使V7、V8导通,有脉冲输出。第一个脉冲由本相触发单元的uco对应的控制角a 产生。隔60的第二个脉冲是由滞后60相位的后一相触发单元产生(通过V6)。晶闸管触发电路总图如图3-9所示。直流电源同步电源输入KJ004产生单脉冲KJ042产生脉冲调制列4066模拟开关实现宽窄切换脉冲放大驱动SCR宽脉冲列图3
22、-9 晶闸管触发电路总图3.3.4 晶闸管保护电路晶闸管由于击穿电压接近工作电压,热容量又较小,所以承受过电压、过电流能力较差,短时间内的过电压、过电流都可能造成元件损坏。为了使晶闸管能正常工作,除了合理的选择元件外,还必须对过电流,过电压的发生采取保护措施。(1)过电流保护晶闸管设备发生过电流有可能是晶闸管损毁、触发电路或控制系统有故障等。针对这些情况,除了用软件来实现保护外,还可以在硬件电路中加入快速熔断器来保护晶闸管的过电流。(2)过电压保护我们知道晶闸管有一个重要的特性参数,即断态电压临界上升率du/dt。它表明晶闸管在额定结温和门极断路条件下,使晶闸管从断态转入通态的最低电压上升率。
23、若电压上升率过大,超过了晶闸管的电压上升率的值,则会在无门极信号的情况下开通。即使此时加于晶闸管的正向电压低于其阳极峰值电压,也可能出现这种情况7。为了限制电路电压上升率过大,确保晶闸管安全运行,本设计在晶闸管两端并联RC阻容吸收网络,利用电容两端电压不能突变的特性来限制电压上升率。如图3-7中所示。因为电路总是存在电感的,所以与电容C串联电阻R可起阻尼作用,它可以防止R、L、C电路在过渡过程中,因振荡在电容器两端出现的过电压损坏晶闸管。同时,避免电容器通过晶闸管放电电流过大,造成过电流而损坏晶闸管。3.4 电压检测回路在电压检测回路中,尽量实现以下三个功能。其一是同步信号的检测功能,采样三相
24、电压的自然换相点,它作为晶闸管脉冲触发信号的同步信号;其二是通过检测晶闸管输出端可以得到晶闸管导通时刻的检测,以便做电压反馈和缺相故障检测;其三是将三相晶闸管输出电压信号通过电阻降压后转变成直流信号,再经A/D转换后送入到单片机中,作为过压或欠压保护的信号。3.4.1 同步信号检测为了保证三相交流调压器主回路中各个晶闸管的触发脉冲与其阳极电压保持严格的相位关系。在电机软起动器的设计过程中,同步信号检测是很重要的一个环节。只有准确的测量出电压的过零点,才能精确的控制晶闸管的导通角,从而实现对电机两端电压的无极加载,完成软起动的功能。采用如图3-10所示的电路作为电压同步信号检测电路8。从图中可以
25、看出,这个电路的功能就是将由电源侧来的线电压正弦信号转为低压方波信号来供单片机进行处理分析。由于这里的信号是从高压转为低压送入单片机处理的,因此要利用一块光耦对高低压信号进行隔离,这样保证了这两种信号可以互不干扰地分离处理。整个工作过程大体是这样的:由电源侧来的线电压信号经过2个电阻和1个二极管,变成半波交流信号,这个交流信号在正半波时触发光耦导通,从而使得右侧输入到单片机的是高电平信号;而当光耦左侧交流信号处于低电平时,光耦则截止。那么右侧输入到单片机的信号也就是低电平。这样周而复始,单片机所得到的就是幅值为5V的方波信号,周期等同于电源的周期即工频50Hz,而高低电平持续的时间也基本与电源
26、侧正负交流信号所持续的时间大致相同,虽然其间存在着一定的时延,但这可以通过软件进行补偿,从而既简化了外围硬件电路的设计,又得到了与电源电压同步的信号,为下面给出晶闸管触发信号提供了工作电压零点的基准。图中右端接主控单片机芯片。这个电路的优点在于:一方面,在起动未开始或是开始瞬间,这个电路就可以检测到器件电压零点;另外,由于输入的交流信号是直接从电源侧获取的,因此这就不需要像其他电路那样需要先利用变压器取得交流信号再进行处理,这样就既节省了线路板的空间,又节约了成本。图3-10同步信号检测电路同时,可以利用图3-10这个电路(以下称为电路I)和另一套与电路I基本相同的电路(以下称为电路II)配合
27、,进行电源的相序判断和缺相检测。简要介绍一下工作原理。电路II和电路I结构基本相同,存在的区别就是,假设电路I的输入侧连接电源的U、V两相,而电路II输入侧连接的就是电源的V、W两相,且输出信号是分别送入主控单片机芯片的外部中断输入口。 我们假设电路I接的是电源的U、V相,而电路II接的是V、W相,这样在三相电源正常工作时,当UV线电压发生正跳变(即从负半波转为正半波)时,VW线电压为负,那么电路II送入CPU的信号就为低电平;当UV线电压发生负跳变时,VW线电压为正,那么电路II送入CPU的信号是高电平(如果电路II接的是W、V相,那么两次送入CPU的信号高低电平情况就相反)。而当电源发生缺相故障时,UV线电压无论发生何种跳变时,VW线电压都同为正或同为负,这样电路II送入单片机的信号将同为高电平或低电平。设置电路I接入单片机的P32引脚在信号每次跳变时都产生中断,并在每次跳变中断时记录下电路II接入单片机的P33引脚的状态,通过两次对比P32引脚的电平情况,从而判断出所连入电路中三相电源的相序,为下一步产生正确的脉冲触发信号序列奠定基础。同时在电源缺相时,也能判断出故障状况,并封锁脉冲信号及给出报警信号和显示信息。3.4.2 电压反馈回路电压
限制150内