数模和模数转换器(共16页).doc
《数模和模数转换器(共16页).doc》由会员分享,可在线阅读,更多相关《数模和模数转换器(共16页).doc(16页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上数模和模数转换器在计算机控制系统与智能化仪表中,用数字方法处理模拟信号时,必须先将模拟量转换成数字量。这是因为在计算机控制系统和智能化仪表中,被测物理量如温度、压力、流量、位移、速度等都是模拟量,而这些数字系统只能接收数字量,所以,必须首先把传感器(有时需要通过变换器)输出的物理量转化成数字量,然后再送到数字系统进行数据处理,以便实现控制或进行显示。同样,在数字通信和遥测技术中,发送端也要把模拟量变成数字量的形式,以便发送出去。能够把模拟量转变为数字量的器件叫模拟-数字转换器(简称A/D转换器)。反过来,计算机控制系统处理后的数字量输出一般不能直接用以控制执行机构,还
2、必须把数字量转变成模拟量;数字通信系统也需在接收端把数字量还原成模拟量。这些都必须由数字-模拟转换器(简称D/A转换器)来完成。可见,A/D转换器和D/A转换器是计算机应用于自动化生产过程的必须器件,也是智能仪表和数字通信系统中不可少的器件。D/A转换器和A/D转换器中的模拟量在电路中多以电流或电压的形式出现,因此转换器的类型很多,这里只介绍典型的数字-电压转换器和电压-数字转换器。由于A/D转换是在D/A转换的基础上实现的,所以先讨论D/A转换器。10.1 数模转换器(DAC)D/A转换器是将输入的二进制数字量转换成电压或电流形式的模拟量输出。因此,D/A转换器可以看作是一个译码器。一般线性
3、D/A转换器,其输出模拟电压u和输入数字量D之间成正比关系,即uO=KD式中K为常数,D为二进制数字量,D=Dn-1Dn-2D0。D/A转换器的一般结构如图10-1所示。图中数据锁存器用来暂时存放输入的数字信号。n位锁存器的并行输出分别控制n个电子开关的工作状态。通过电子开关,将参考电压按权关系加到电阻解码网络。并非所有的D/A转换器都具有这几个部分,但虚框内的部分是必不少的。现在我们来讨论如何把一个二进制的数值D转换成一个模拟电压uO,这是D/A转换的典型问题。一种简单的解决方法是,用二进制数的每一位数码按权大小产生一个电压,此电压的值正比于对应位码的权值。例如,位Dn-1=1时产生电压2n
4、-1K伏、Dn-1=0时产生电压0伏,即位Dn-1产生的电压为Dn-12n-1K伏;位Dn-2产生的电压为Dn-12n-2K伏;位D0产生的电压为D020K伏;以上K为定常系数。然后,把这些电压简单地加起来,结果就是,uO=Dn-12n-1K+Dn-22n-2K+D020K=K(Dn-12n-1+Dn-22n-2+D020)=KD图10-2就是按这种方法实现的D/A转换器,实际上,这是一个加权加法运算电路。图中电阻网络与二进制数的各位权相对应,权越大对应的电阻值越小,故称为权电阻网络。图中VR为稳恒直流电压,是D/A转换电路的参考电压。n路电子开关Si由n位二进制数D的每一位数码Di来控制,D
5、i=0时开关Si将该路电阻接通“地端”,Di=1时Si将该路电阻接通参考电压VR。集成运算放大器作为求和权电阻网络的缓冲,主要是为了减少输出模拟信号负载变化的影响,并将电流输出转换为电压输出。图10-2中,因A点“虚地”,VA=0,各支路电流分别为又因放大器输入端“虚断”,所以, 图10-2权电阻网络转换器In-1+In-2+ I0= If以上各式联立得,从上式可见,输出模拟电压uO的大小与输入二进制数的大小成正比,实现了数字量到模拟量的转换。权电阻网络D/A转换器电路简单,但该电路在实现上有明显缺点,各电阻的阻值相差较大,尤其当输入的数字信号的位数较多时,阻值相差更大。这样大范围的阻值,要保
6、证每个都有很高的精度是极其困难的,不利于集成电路的制造。为了克服这一缺点,D/A转换器广泛采用T型和倒T型电阻网络D/A转换器。10.1.1 倒T形电阻网络D/A转换器图10-3为T型电阻网络4位D/A转换器的原理图。图中电阻译码网络是由R和2R两种阻值的电阻组成T型电阻网络,运算放大器构成电压跟随器,图中略去了数据锁存器,电子开关S3、S2、S1、S0在二进制数D相应位的控制下或者接参考电压VR(相应位为1)或者接地(相应位为0)。当电子开关S3、S2、S1、S0全部接地时,从任一节点a、b、c、d向其左下看的等效电阻都等于R。下面利用叠加原理和戴维兰定理来求转换器的输出uO。当D0单独作用
7、时,T型电阻网络如图10-4a)所示。把a点左下等效成戴维兰电源,如图10-4b)所示;然后依次把b点、c点、d点它们的左下电路等效成戴维兰电源时分别如图10-4 c)、d)、e)所示。由于电压跟随器的输入电阻很大,远远大于R,所以,D0单独作用时d点电位几乎就是戴维兰电源的开路电压D0VR/16,此时转换器的输出uO(0)=D0VR/16当D1单独作用时,T型电阻网络如图10-5(a)所示,其d点左下电路的戴维兰等效如图7-5(b)所示。同理,D2单独作用时d点左下电路的戴维兰等效电源如图10-5(c)所示;D3单独作用时d点左下电路的戴维兰等效电源如图7-5d)所示。故D1、D2、D3单独
8、作用时转换器的输出分别为uO(1)=D1VR/8uO(2)=D2VR/4uO(3)=D3VR/2利用叠加原理可得到转换器的总输出为uO=uO(0)+uO(1)+uO(2)+uO(3)=(D020+D121+D222+D323)可见,输出模拟电压正比于数字量的输入。推广到n位,D/A转换器的输出为uO=T型电阻网络由于只用了R和2R两种阻值的电阻,其精度易于提高,也便于制造集成电路。但也存在以下缺点:在工作过程中,T型网络相当于一根传输线,从电阻开始到运放输入端建立起稳定的电流电压为止需要一定的传输时间,当输入数字信号位数较多时,将会影响D/A转换器的工作速度。另外,电阻网络作为转换器参考电压V
9、R的负载电阻将会随二进制数D的不同有所波动,参考电压的稳定性可能因此受到影响。所以实际中,常用下面的倒T型D/A转换器。10.1.2 倒T型网络DAC图10-6为倒T型电阻网络D/A转换器原理图。由于P点接地、N点虚地,所以不论数码D0、D1、D2、D3是0还是1,电子开关S0、S1、S2、S3都相当于接地,因此,图中各支路电流I0、I1、I2、I3和IR大小不会因二进制数的不同而改变。并且,从任一节点a、b、c、d向左上看的等效电阻都等于R,所以流出VR的总电流为IR=VR/R,而流入各2R支路的电流依次为I3=IR /2I2=I3 /2=IR /4I1=I2 /2=IR /8I0=I1 /
10、2=IR /16流入运算放大器反相端的电流为Iout1=D0I0+D1I1+D2I2+D3I3=(D020+D121+D222+D323)IR /16运算放大器的输出电压为uO=-Iout1Rf= -(D020+D121+D222+D323)IR Rf /16若Rf=R,并将IR=VR/R代入上式,则有uO=-(D020+D121+D222+D323)可见,输出模拟电压正比于数字量的输入。推广到n位,D/A转换器的输出为uO=-倒T型电阻网络也只用了R和2R两种阻值的电阻,但和T型电阻网络相比较,由于各支路电流始终存在且恒定不变,所以各支路电流到运放的反相输入端不存在传输时间,因此具有较高的转
11、换速度。10.1.3 DAC的主要技术指标1满量程满量程是输入数字量全为1时再在最低位加1时的模拟量输出。它是个理论值,可以趋近,但永远达不到。如果输出模拟量是电压量,则满量程电压用uFs表示;如果输出模拟量是电流量,则满量程电流用IFs表示。2分辨率D/A转换器的分辨率是指单位数字量的变化所引起的模拟量的变化,通常定义为满量程电压与2n之比值,也可用满量程的百分数来表示。当输入数字量最低有效位变化1时,对应输出可分辨的电压u与满量程电压uFs之比,就是分辨率,即分辨率=可见,分辨率与输入数字量的位数n有关,故常用位数来表示D/A转换器的分辨率,如8位D/A转换器、10位D/A转换器等。D/A
12、转换器的分辨率越高,转换时对输入量的微小变化反应越灵敏。3转换精度转换精度是实际输出值与理论计算值之差。这种差值越小,转换精度越高。转换过程中存在各种误差,包括静态误差和温度误差。静态误差主要由以下几种误差构成:非线性误差。 D/A转换器每相邻数码对应的模拟量之差应该都是相同的,即理想转换特性应为直线。如图10-8实线所示,实际转换时特性可能如图10-8(a)中虚线所示,我们把在满量程范围内偏离转换特性的最大误差叫非线性误差,它与最大量程的比值称为非线性度。漂移误差,又叫零位误差。 它是由运算放大器零点漂移产生的误差。当输入数字量为0时,由于运算放大器的零点漂移,输出模拟电压并不为0。这使输出
13、电压特性与理想电压特性产生一个相对位移,如图10-8(b)中的虚线所示。零位误差将以相同的偏移量影响所有的码。比例系数误差,又叫增益误差。 它是转换特性的斜率误差。一般地,由于VR是D/A转换器的比例系数,所以,比例系数误差一般是由参考电压VR的偏离而引起的。比例系数误差如图7-8(c)中的虚线所示,它将以相同的百分数影响所有的码。温度误差通常是指上述各静态误差随温度的变化。 4. 建立时间从数字信号输入DAC起,到输出电流(或电压)达到稳态值所需的时间为建立时间。建立时间的大小决定了转换速度。除上述各参数外,在使用D/A转换器时还应注意它的输出电压特性。由于输出电压事实上是一串离散的瞬时信号
14、,要恢复信号原来的时域连续波形,还必须采用保持电路对离散输出进行波形复原。此外还应注意D/A的工作电压、输出方式、输出范围和逻辑电平等等。7.2 模数转换器(ADC)10.2.1 模数转换的一般步骤A/D转换是将模拟信号转换为数字信号,转换过程须通过取样、保持、量化和编码四个步骤完成。1采样和保持 采样(也称取样)是将时间上连续变化的信号转换为时间上离散的信号,即将时间上连续变化的模拟量转换为一系列等间隔的脉冲,脉冲的幅度取决于输入模拟量,其过程如图图10-9所示。图中ui(t)为输入模拟信号,S(t)为采样脉冲,uO(t)为取样输出信号。在取样脉冲作用期内,取样开关接通,使输出uO(t) =
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数模 转换器 16
限制150内