二次函数专题一:角度问题.doc
《二次函数专题一:角度问题.doc》由会员分享,可在线阅读,更多相关《二次函数专题一:角度问题.doc(10页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上二次函数专题一:角度一、有关角相等1、已知抛物线的图象与轴交于、两点(点在点的左边),与轴交于点,过点作轴的平行线与抛物线交于点,抛物线的顶点为,直线经过、两点.(1) 求此抛物线的解析式;(2)连接、,试比较和的大小,并说明你的理由.思路点拨:对于第(1)问,需要注意的是CD和x轴平行(过点作轴的平行线与抛物线交于点)对于第(2)问,比较角的大小a、 如果是特殊角,也就是我们能分别计算出这两个角的大小,那么他们之间的大小关系就清楚了b、 如果这两个角可以转化成某个三角形的一个外角和一个不相邻的内角,那么大小关系就确定了c、 如果稍难一点,这两个角转化成某个三角形的两
2、个内角,根据大边对大角来判断角的大小d、 除了上述情况外,那只有可能两个角相等,那么证明角相等的方法我们学过什么呢,全等三角形、相似三角形和简单三角函数,从这个题来看,很明显没有全等三角形,剩下的就是相似三角形和简单三角函数了,其实简单三角函数证明角相等和相似三角形证明角相等的本质是一样的,都是对应边的比相等e、 可能还有人会问,这么想我不习惯,太复杂了,那么我再说一个最简单的方法,如何快速的找出题目的结论问题,在本题中,需要用到的点只有M、C、A、B这四个点,而这四个点的坐标是很容易求出来的,那么请你把这四个点规范的在直角坐标系内标出来,再用量角器去量这两个角大大小,你就能得出结论了,得出结
3、论以后你再看d这一条解:(1)CDx轴且点C(0,3),设点D的坐标为(x,3) 直线y= x+5经过D点,3= x+5x=2即点D(2,3) 根据抛物线的对称性,设顶点的坐标为M(1,y),又直线y= x+5经过M点,y =1+5,y =4即M(1,4)设抛物线的解析式为点C(0,3)在抛物线上,a=1即抛物线的解析式为3分(2)作BPAC于点P,MNAB于点N由(1)中抛物线可得点A(3,0),B(1,0),AB=4,AO=CO=3,AC=PAB45ABP=45,PA=PB=PC=ACPA=在RtBPC中,tanBCP=2在RtANM中,M(-1,4),MN=4AN=2tanNAM=2BC
4、PNAM即ACBMAB后记:对于几何题来说,因为组成平面图形的最基本的元素就是线段和角(圆分开再说),所以几何的证明无非就是线段之间的关系,角之间的关系,在二次函数综合题里,我主张首先要想到的是利用角之间的关系来解题,其次才是利用线段之间的关系来解题,除非你很快就能看出利用线段之间的关系来解题很简单,因为在直角坐标系里要求两点之间的距离是很麻烦的,尤其是不知道某个点的确切坐标时,那么这个题给了我们一个如果判断角之间关系的基本思路2、(2012朝阳一模第24题8分)24. 在平面直角坐标系xOy中,抛物线经过点N(2,5),过点N作x轴的平行线交此抛物线左侧于点M,MN=6.(1)求此抛物线的解
5、析式;(2)点P(x,y)为此抛物线上一动点,连接MP交此抛物线的对称轴于点D,当DMN为直角三角形时,求点P的坐标;(3)设此抛物线与y轴交于点C,在此抛物线上是否存在点Q,使QMN=CNM ?若存在,求出点Q的坐标;若不存在,说明理由.24. 解:(1)过点M、N(2,5),由题意,得M(,). 解得 此抛物线的解析式为. 2分(2)设抛物线的对称轴交MN于点G,若DMN为直角三角形,则.D1(,),(,). 4分直线MD1为,直线为.将P(x,)分别代入直线MD1,的解析式,得,.解得 ,(舍),(1,0). 5分解得 ,(舍),(3,12). 6分(3)设存在点Q(x,),使得QMN=
6、CNM. 若点Q在MN上方,过点Q作QHMN,交MN于点H,则.即.解得,(舍).(,3). 7分 若点Q在MN下方,同理可得(6,). 8分3、(2012西城一模25题8分)25平面直角坐标系xOy中,抛物线与x轴交于点A、点B,与y轴的正半轴交于点C,点 A的坐标为(1, 0),OB=OC,抛物线的顶点为D (1) 求此抛物线的解析式; (2) 若此抛物线的对称轴上的点P满足APB=ACB,求点P的坐标; (3) Q为线段BD上一点,点A关于AQB的平分线的对称点为,若,求点Q的坐标和此时的面积 图925解:(1) , 抛物线的对称轴为直线 抛物线与x轴交于 点A、点B,点A的坐标为, 点
7、B的坐标为,OB3 1分可得该抛物线的解析式为 OB=OC,抛物线与y轴的正半轴交于点C, OC=3,点C的坐标为将点C的坐标代入该解析式,解得a=12分 此抛物线的解析式为(如图9) 3分 (2)作ABC的外接圆E,设抛物线的对称轴与x轴的交点为点F,设E与抛物线的对称轴位于x轴上方的部分的交点为点,点关于x轴的对称点为点,点、点均为所求点.(如图10) 可知圆心E必在AB边的垂直平分线即抛物线的对称轴直线上 、都是弧AB所对的圆周角, ,且射线FE上的其它点P都不满足由(1)可知 OBC=45,AB=2,OF=2可得圆心E也在BC边的垂直平分线即直线上 点E的坐标为 4分 由勾股定理得 点
8、的坐标为 5分由对称性得点的坐标为 6分符合题意的点P的坐标为、.(3) 点B、D的坐标分别为、,可得直线BD的解析式为,直线BD与x轴所夹的锐角为45 点A关于AQB的平分线的对称点为,(如图11)若设与AQB的平分线的交点为M,则有 ,Q,B,三点在一条直线上 , 作x轴于点N 点Q在线段BD上, Q,B,三点在一条直线上, , 点的坐标为 点Q在线段BD上, 设点Q的坐标为,其中 , 由勾股定理得 解得经检验,在的范围内 点Q的坐标为 7分此时 8分二、特殊角(一)、450角1、如图,在平面直角坐标系xoy中,点P为抛物线上一动点,点A的坐标为(4,2),若点P使AOP450,请求出点P
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 二次 函数 专题 角度 问题
限制150内