xx年高考第一轮复习数学.离散型随机变量的分布列(共8页).docx
《xx年高考第一轮复习数学.离散型随机变量的分布列(共8页).docx》由会员分享,可在线阅读,更多相关《xx年高考第一轮复习数学.离散型随机变量的分布列(共8页).docx(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上第十二章 概率与统计网络体系总览考点目标定位1.了解离散型随机变量的意义,会求出某些简单的离散型随机变量的分布列.2.了解离散型随机变量的期望值、方差的意义,会根据离散型随机变量的分布列求出期望值、方差.3.会用随机抽样、系统抽样、分层抽样等常用的抽样方法从总体中抽取样本.4.会用样本频率分布估计总体分布.5.了解正态分布的意义及主要性质.6.了解线性回归的方法和简单应用.7.实习作业以抽样方法为内容,培养学生解决实际问题的能力.复习方略指南在复习中,要注意理解变量的多样性,深化函数的思想方法在实际问题中的应用,充分注意一些概念的实际意义,理解概率中处理问题的基本思想
2、方法,掌握所学概率知识的实际应用.1.把握基本题型应用本章知识要解决的题型主要分两大类:一类是应用随机变量的概念,特别是离散型随机变量分布列以及期望与方差的基础知识,讨论随机变量的取值范围,取相应值的概率及期望、方差的求解计算;另一类主要是如何抽取样本及如何用样本去估计总体.作为本章知识的一个综合应用,教材以实习作业作为一节给出,应给予足够的重视.2.强化双基训练主要是培养扎实的基础知识,迅捷准确的运算能力,严谨的判断推理能力.3.强化方法选择特别在教学中要掌握思维过程,引导学生发现解决问题的方法,达到举一反三的目的,还要进行题后反思,使学生在大脑记忆中构建良好的数学认知结构,形成条理化、有序
3、化、网络化的有机体系.4.培养应用意识要挖掘知识之间的内在联系,从形式结构、数字特征、图形图表的位置特点等方面进行联想和试验,找到知识的“结点”.再有就是将实际问题转化为纯数学问题进行训练,以培养利用所学知识解决实际问题的能力.12.1 离散型随机变量的分布列知识梳理1.随机变量的概念如果随机试验的结果可以用一个变量表示,那么这样的变量叫做随机变量,它常用希腊字母、等表示.(1)离散型随机变量.如果对于随机变量可能取的值,可以按一定次序一一列出,那么这样的随机变量叫做离散型随机变量.(2)若是随机变量,=a+b,其中a、b是常数,则也是随机变量.2.离散型随机变量的分布列(1)概率分布(分布列
4、).设离散型随机变量可能取的值为x1,x2,xi,取每一个值xi(i=1,2,)的概率P(=xi)=pi,则称表x1x2xiPp1p2pi为随机变量的概率分布,简称的分布列.(2)二项分布.如果在一次试验中某事件发生的概率是p,那么在n次独立重复试验中这个事件恰好发生k次的概率是P(=k)=Cpkqnk.其中k=0,1,n,q=1p,于是得到随机变量的概率分布如下:01knPCp0qnCp1qn1CpkqnkCpnq0我们称这样的随机变量服从二项分布,记作B(n,p),其中n、p为参数,并记Cpkqnk=b(k;n,p).特别提示二项分布是一种常用的离散型随机变量的分布.点击双基1.抛掷两颗骰
5、子,所得点数之和为,那么=4表示的随机试验结果是A.一颗是3点,一颗是1点B.两颗都是2点C.两颗都是4点D.一颗是3点,一颗是1点或两颗都是2点解析:对A、B中表示的随机试验的结果,随机变量均取值4,而D是 =4代表的所有试验结果.掌握随机变量的取值与它刻画的随机试验的结果的对应关系是理解随机变量概念的关键.答案:D2.下列表中能成为随机变量的分布列的是A.101P0.30.40.4B.123P0.40.70.1C.101P0.30.40.3D.123P0.30.40.4解析:A、D不满足分布列的基本性质,B不满足分布列的基本性质.答案:C3.已知随机变量的分布列为P(=k)=,k=1,2,
6、则P(24)等于A.B.C.D.解析:P(24)=P(=3)+P(=4)=+=.答案:A4.某批数量较大的商品的次品率为10%,从中任意地连续取出5件,其中次品数的分布列为_.解析:本题中商品数量较大,故从中任意抽取5件(不放回)可以看作是独立重复试验n=5,因而次品数服从二项分布,即B(5,0.1).的分布列如下:012345P0.950.50.940.10.930.010.924.50.140.155.设随机变量B(2,p),B(4,p),若P(1)=,则P(1)=_.解析:P(1)=1P(1)=1Cp0(1p)2=,p=,P(1)=1P(=0)=1C()0()4=1=.答案: 典例剖析【
7、例1】 在10件产品中有2件次品,连续抽3次,每次抽1件,求:(1)不放回抽样时,抽到次品数的分布列;(2)放回抽样时,抽到次品数的分布列.剖析:随机变量可以取0,1,2,也可以取0,1,2,3,放回抽样和不放回抽样对随机变量的取值和相应的概率都产生了变化,要具体问题具体分析.解:(1)P(=0)=,P(=1)=,P(=2)=,所以的分布列为012P(2)P(=k)=C0.83k0.2k(k=0,1,2,3),所以的分布列为0123PC0.83C0.820.2C0.80.22C0.23评述:放回抽样时,抽到的次品数为独立重复试验事件,即B(3,0.8).特别提示求离散型随机变量分布列要注意两个
8、问题:一是求出随机变量所有可能的值;二是求出取每一个值时的概率.【例2】 一袋中装有5只球,编号为1,2,3,4,5,在袋中同时取3只,以表示取出的三只球中的最小号码,写出随机变量的分布列.剖析:因为在编号为1,2,3,4,5的球中,同时取3只,所以小号码可能是1或2或3,即可以取1,2,3.解:随机变量的可能取值为1,2,3.当=1时,即取出的三只球中最小号码为1,则其他两只球只能在编号为2,3,4,5的四只球中任取两只,故有P(=1)=;当=2时,即取出的三只球中最小号码为2,则其他两只球只能在编号为3,4,5的三只球中任取两只,故有P(=2)=;当=3时,即取出的三只球中最小号码为3,则
9、其他两只球只能在编号为4,5的两只球中任取两只,故有P(=3)=.因此,的分布列如下表所示:123P评述:求随机变量的分布列,重要的基础是概率的计算,如古典概率、互斥事件的概率、相互独立事件同时发生的概率、n次独立重复试验有k次发生的概率等.本题中基本事件总数,即n=C,取每一个球的概率都属古典概率(等可能性事件的概率).【例3】 (2004年春季安徽)已知盒中有10个灯泡,其中8个正品,2个次品.需要从中取出2个正品,每次取出1个,取出后不放回,直到取出2个正品为止.设为取出的次数,求的分布列及E.剖析:每次取1件产品,至少需2次,即最小为2,有2件次品,当前2次取得的都是次品时,=4,所以
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- xx 年高 第一轮 复习 数学 离散 随机变量 分布
限制150内