余弦定理教学设计(共10页).doc





《余弦定理教学设计(共10页).doc》由会员分享,可在线阅读,更多相关《余弦定理教学设计(共10页).doc(10页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上1.12余弦定理教学设计一、教学目标认知目标:在创设的问题情境中,引导学生发现余弦定理的内容,推证余弦定理,并简单运用余弦定理解三角形;能力目标:引导学生通过观察,推导,比较,由特殊到一般归纳出余弦定理,培养学生的创新意识和观察与逻辑思维能力,能体会用向量作为数形结合的工具,将几何问题转化为代数问题; 情感目标:面向全体学生,创造平等的教学氛围,通过学生之间、师生之间的交流、合作和评价,调动学生的主动性和积极性,给学生成功的体验,培养学生学习数学兴趣和热爱科学、勇于创新的精神。二、教学重难点重点:探究和证明余弦定理的过程;理解掌握余弦定理的内容;初步对余弦定理进行应用
2、。难点:利用向量法证明余弦定理的思路;对余弦定理的熟练应用。三、学情分析和教学内容分析在学习本节课之前,学生已经学习了正弦定理的内容,初步掌握了正弦定理的证明及应用,并明确了用正弦定理可以来解哪些类型的三角形。在此基础上,教师可以创设一个“已知三角形两边及夹角”来解三角形的实际例子,学生发现不能用上一节所学的知识来解决这一问题,从而引发学生的学习兴趣,引出这一节的内容。在对余弦定理教学中时,考虑到它比正弦定理形式上更加复杂,教师可以有目的的提供一些供研究的素材,并作必要的启发和引导,让学生进行思考,通过类比、联想、质疑、探究等步骤,辅以小组合作学习,建立猜想,获得命题,再想方设法去证明。在用两
3、种不同的方法证明余弦定理时,学生可能会遇到证明思路上的困难,教师可以适当的点拨。四、教学过程环节一 【创设情境】1、复习引入让学生回答正弦定理的内容和能用这个定理解决哪些类型的问题。ABC图12、情景引入如图1,某隧道施工队为了开凿一条山地隧道,需要测算隧道通过这座山的长度。工程技术人员先在地面上选一适当的位置A,量出A到山脚B、C的距离,再利用经纬仪测出A对山脚BC(即线段BC)的张角,最后通过计算求出山脚的长度BC。学生不难将这个实际问题转化到数学问题:已知三角形的两边和一个夹角,去求三角形的另外一边。这个问题是不能使用正弦定理来求解的。学生急切的希望应用新知识来解决这个问题。环节二 【导
4、入新课】问题:在ABC中,当C=90时,有c2=a2+b2若a,b边的长短不变,变换C的大小时,c2与a2+b2有什么大小关系呢?请同学们思考。 教师鼓励学生积极思考,大胆发言,启发学生解决问题,学生回答,借助于多媒体动画演示结果。如图2,若C90时,由于AC与BC的长度不变,所以AB的长度变短,即c2a2+b2CBAB图2ACBB图3如图3,若C90时,由于AC与BC的长度不变,所以AB的长度变长,即c2a2+b2经过议论学生已得到当C90时,c2a2+b2。环节三 【新课探究】探究1、在上一个问题中,我们已经知道,当C90时,c2a2+b2。那么c2与a2+b2到底有什么等量关系呢?请同学
5、们继续探究。教师引导学生分组合作学习,可让几个小组的学生研究当C为锐角时的结论,另外的小组研究当C为钝角时的结论。最后交流探索,展示成果。如图4,当C为锐角时,作BDAC于D,BD把ABC分成两个直角三角形: ACBD图4在RtABD中,AB2=AD2+BD2;在RtBDC中,BD=BCsinC=asinC,DC=BCcosC=acosC所以,AB2=AD2+BD2化为c2=(bacosC)2+(asinC)2,c2=b22abcosC+a2cos2C+a2sin2C,c2=a2+b22abcosC可以看出C为锐角时,ABC的三边a,b,c具有c2=a2+b22abcosC的关系。如图5,当C
6、为钝角时,作BDAC,交AC的延长线于D。BADC图5ACB是两个直角三角形之差。在RtABD中,AB2=AD2+BD2在RtBCD中,BCD=CBD=BCsin(C),CD=BC cos(C)所以AB2=AD2+BD2化为c2=(AC+CD)2+BD2=b+acos(C)2+asin(C)2=b2+2abcos(C)+a2cos2(C)+a2sin2(C)=b2+2abcos(C)+a2因为cos(C)=cosC,所以也可以得到c2=b2+a22abcosC。教师点拨:以上两种情况,我们可以考察向量在向量方向上的正射影的数量:当C分别是锐角和钝角的时候,得到两个数量符号相反;当C是直角的时候
7、,其向量在直角边上的正射影的数量为零。因此,无论是C是锐角、直角还是钝角,都有,在RtADB中,运用勾股定理,得c2=a2+b22abcosC,我们轮换A,B,C的位置可以得到a2=b2+c22bccosAb2=c2+a22accosB于是,我们得到三角形中边角关系的又一重要定理:(多媒体投影余弦定理的内容) 余弦定理 三角形任何一边的平方等于其他两边的平方和减去这两边与它们夹角的余弦的积的两倍,即c2=a2+b22abcosCa2=b2+c22bccosAb2=c2+a22accosB从以上的公式中解出,则可以得到余弦定理的另外一种形式:从以上分析过程,我们对C不是直角的情况有了清楚认识。我
8、们不仅要认识到,C为锐角和钝角时都有c2=a2+b22abcosC,还要体会出怎样把一个斜三角形转化成两个直角三角形的。这种由未知向已知转化的思想在数学中经常用到。探究2、你还能用向量的方法证明余弦定理吗?参看教材例1左上方的思路提示。教师点拨学生的思路,可以让学生分组讨论、探究,最后教师用多媒体展示证明的思路及过程。图6如图6,在ABC中,设,教师点评:对于探究1,我们分C是锐角和钝角的情况对余弦定理的形式给出了证明,过程比较复杂;对于探究2,我们应用向量的数量积可以很简单的证明余弦定理,这就可以看出向量作为一种工具在证明一些数学问题中的作用,在今后的学习中,我们应该加强对所学知识的应用。探
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 余弦 定理 教学 设计 10

限制150内