高中立体几何证明方法及例题.doc
《高中立体几何证明方法及例题.doc》由会员分享,可在线阅读,更多相关《高中立体几何证明方法及例题.doc(24页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上 1. 空间角与空间距离在高考的立体几何试题中,求角与距离是必考查的问题,其中最主要的是求线线角、线面角、面面角、点到面的距离,求角或距离的步骤是“一作、二证、三算”,即在添置必要的辅助线或辅助面后,通过推理论证某个角或线段就是所求空间角或空间距离的相关量,最后再计算。 2. 立体几体的探索性问题立体几何的探索性问题在近年高考命题中经常出现,这种题型有利于考查学生归纳、判断等方面的能力,也有利于创新意识的培养。近几年立体几何探索题考查的类型主要有:(1)探索条件,即探索能使结论成立的条件是什么?(2)探索结论,即在给定的条件下命题的结论是什么。对命题条件的探索常采用以
2、下三种方法:(1)先观察,尝试给出条件再证明;(2)先通过命题成立的必要条件探索出命题成立的条件,再证明充分性;(3)把几何问题转化为代数问题,探索出命题成立的条件。对命题结论的探索,常从条件出发,再根据所学知识,探索出要求的结论是什么,另外还有探索结论是否存在,常假设结论存在,再寻找与条件相容还是矛盾。(一)平行与垂直关系的论证 由判定定理和性质定理构成一套完整的定理体系,在应用中:低一级位置关系判定高一级位置关系;高一级位置关系推出低一级位置关系,前者是判定定理,后者是性质定理。 1. 线线、线面、面面平行关系的转化: 2. 线线、线面、面面垂直关系的转化: 3. 平行与垂直关系的转化:
3、4. 应用以上“转化”的基本思路“由求证想判定,由已知想性质。” 5. 唯一性结论: 1. 三类角的定义: (1)异面直线所成的角:090 (2)直线与平面所成的角:090 (3)二面角:二面角的平面角,0180 2. 三类角的求法:转化为平面角“一找、二作、三算”即:(1)找出或作出有关的角; (2)证明其符合定义; (3)指出所求作的角; (4)计算大小。(三)空间距离:求点到直线的距离,经常应用三垂线定理作出点到直线的垂线,然后在相关三角形中求解。求点到面的距离,一般找出(或作出)过此点与已知平面垂直的平面利用面面垂直的性质求之也可以利用“三棱锥体积法”直接求距离,直线与平面的距离,面面
4、距离都可转化为点到面的距离。【典型例题】(一)与角有关的问题 例1. (1)如图,E、F分别为三棱锥PABC的棱AP、BC的中点,PC10,AB6,EF7,则异面直线AB与PC所成的角为( )A. 60B. 45C. 30D. 120解:取AC中点G,连结EG、FG,则EGF为AB与PC所成的角在EGF中,由余弦定理,AB与PC所成的角为18012060选A(2)已知正四棱锥以棱长为1的正方体的某个面为底面,且与该正方体有相同的全面积,则这一正四棱锥的侧棱与底面所成的角的余弦值为( )解:选A点P到平面QEF的距离为定值;直线PQ与平面PEF所成的角为定值;二面角PEFQ的大小为定值;三棱锥P
5、QEF的体积为定值其中正确命题的序号是_。解:对,错值,对综上,正确。 例2. 图是一个正方体的表面展开图,MN和PQ是两条面对角线,请在图(2)的正方体中将MN,PQ画出来,并就这个正方体解答下列各题:(1)求MN和PQ所成角的大小;(2)求四面体MNPQ的体积与正方体的体积之比;(3)求二面角MNQP的大小。解:(1)如图,作出MN、PQPQNC,又MNC为正三角形MNC60PQ与MN成角为60 即四面体MNPQ的体积与正方体的体积之比为1:6(3)连结MA交PQ于O点,则MOPQ又NP面PAQM,NPMO,则MO面PNQ过O作OENQ,连结ME,则MENQMEO为二面角MNQP的平面角在
6、RtNMQ中,MENQMNMQ设正方体的棱长为aMEO60即二面角MNQP的大小为60。 例3. 如图,已知四棱锥PABCD,PBAD,侧面PAD为边长等于2的正三角形,底面ABCD为菱形,侧面PAD与底面ABCD所成的二面角为120。(1)求点P到平面ABCD的距离;(2)求面APB与面CPB所成二面角的大小。解:(1)作PO平面ABCD,垂足为O,连结OB、OA、OD,OB与AD交于点E,连结PEADPB,ADOB(根据_)PAPD,OAOD于是OB平分AD,点E为AD中点PEADPEB为面PAD与面ABCD所成二面角的平面角PEB120,PEO60即为P点到面ABCD的距离。(2)由已知
7、ABCD为菱形,及PAD为边长为2的正三角形PAAB2,又易证PBBC故取PB中点G,PC中点F则AGPB,GFBC又BCPB,GFPBAGF为面APB与面CPB所成的平面角GFBCAD,AGFGAE连结GE,易证AE平面POB(2)解法2:如图建立直角坐标系,其中O为坐标原点,x轴平行于DA(二)与距离有关的问题 例4. (1)已知在ABC中,AB9,AC15,BAC120,它所在平面外一点P到ABC三个顶点的距离都是14,那么点P到平面ABC的距离是( )A. 13B. 11C. 9D. 7 解:设点P在ABC所在平面上的射影为OPAPBPC,O为ABC的外心ABC中,AB9,AC15,B
8、AC120长度为_。解:(采用展开图的方法)点评:此类试题,求沿表面运动最短路径,应展开表面为同一平面内,则线段最短。但必须注意的是,应比较其各种不同展开形式中的不同的路径,取其最小的一个。(3)在北纬45圈上有甲、乙两地,它们的经度分别是东经140与西经130,设地球半径为R,则甲、乙两地的球面距离是( )解:(O1为小圆圆心)AOB为正三角形(O为球心)选D 例5. 如图,四棱锥PABCD,底面ABCD是矩形,PA平面ABCD,E、F分别是AB、PD中点。(1)求证:AF平面PEC;距离。解:G为PC中点,连结FG、EG又F为PD中点四边形AEGF为平行四边形AF平面PEC(2)CDAD,
9、又PA面ABCDAD为PD在面ABCD上射影CDPDPDA为二面角PCDB的平面角,且PDA45则PAD为等腰直角三角形AFPD,又CD平面PADCDAFAF面PCD作FHPC于H,则AFFH又EGAF,EGFHFH面PEC,FH为F到面PEC的距离在RtPEG中,FHPGPFFG方法2:(体积法)AF面PEC,故只要求点A到面PEC的距离d易证AF面PCD,EG面PCDEGPC (三)对命题条件的探索 例6. (1)如图已知矩形ABCD中,AB3,BCa,若PA平面ABCD,在BC边上取点E,使PEDE,则满足条件E点有两个时,a的取值范围是( )解:PA面ABCD,PEDE由三垂线定理的逆
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中 立体 几何 证明 方法 例题
限制150内