高二数学圆锥曲线基础练习题(一)讲义.doc
《高二数学圆锥曲线基础练习题(一)讲义.doc》由会员分享,可在线阅读,更多相关《高二数学圆锥曲线基础练习题(一)讲义.doc(14页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上高二数学圆锥曲线基础练习题(一)一、选择题:1抛物线的焦点坐标为 ( ) A B C D2双曲线的虚轴长是实轴长的2倍,则 ( )A B C D3双曲线的一个焦点到渐近线距离为 ( )A6 B5 C4 D34已知ABC的顶点B、C在椭圆y21上,顶点A是椭圆的一个焦点,且椭圆的另外一个焦点在BC边上,则ABC的周长是 ( )A2 B6 C4 D125已知椭圆,长轴在轴上. 若焦距为,则等于 ( ) A B C D 6已知是双曲线右支上的一点,双曲线的一条渐近线方程为. 设 分别为双曲线的左、右焦点. 若,则 ( ) A 5 B4 C3 D2 7将抛物线按向量a平移,使
2、顶点与原点重合,则向量a的坐标是()A B C D8已知双曲线的两个焦点为,P是此双曲线上的一点,且, ,则该双曲线的方程是 ( )ABC D 9设是右焦点为的椭圆上三个不同的点,则“成等差数列”是“”的 ( )A充要条件 B必要不充分条件 C充分不必要条件 D既非充分也非必要条件10已知双曲线的左右焦点分别为,为的右支上一点,且,则的面积等于 ( )A B C D 11已知点P在抛物线上,那么点P到点Q(2,-1)的距离与点P到抛物线焦点距离之和取得最小值时,点P的坐标为 ( )A(,-1) B(,1) C(1,2) D(1,-2)12设P是双曲线上的一点,、分别是双曲线的左、右焦点,则以线
3、段为直径的圆与以双曲线的实轴为直径的圆的位置关系是 ( )A内切B外切C内切或外切D不相切二、填空题:13点是抛物线上一动点,则点到点的距离与到直线的距离和的最小值是;14已知P是椭圆在第一象限内的点,A(2,0),B(0,1),O为原点,求四边形OAPB的面积的最大值_;15已知抛物线的焦点是坐标原点,则以抛物线与两坐标轴的三个交点为顶点的三角形面积为 ;16若直线与圆没有公共点,则满足的关系式为_;以(m,n)为点P的坐标,过点P的一条直线与椭圆的公共点有_个。三、解答题:17已知椭圆的一个顶点为,焦点在x轴上,若右焦点到直线的距离为3. (I)求椭圆的标准方程; (II)设直线:,是否存
4、在实数m,使直线椭圆有两个不同的交点M、N,且,若存在,求出m的值;若不存在,请说明理由.18如图,椭圆1(ab0)与过点A(2,0)B(0,1)的直线有且只有一个公共点T,且椭圆的离心率. (I)求椭圆方程; (II)设F、F分别为椭圆的左、右焦点,求证:. 19已知菱形的顶点在椭圆上,对角线所在直线的斜率为1()当直线过点时,求直线的方程;()当时,求菱形面积的最大值20已知的面积为,. (I)设,求正切值的取值范围; (II)设以O为中心,F为焦点的双曲线经过点Q(如图),当 取得最小值时,求此双曲线的方程。 21某中心接到其正东、正西、正北方向三个观测点的报告:正西、正北两个观测点同时
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 圆锥曲线 基础 练习题 讲义
限制150内