导数练习题及答案:函数的极值(共4页).doc
《导数练习题及答案:函数的极值(共4页).doc》由会员分享,可在线阅读,更多相关《导数练习题及答案:函数的极值(共4页).doc(4页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上利用导数求函数的极值例 求下列函数的极值:1;2;3分析:按照求极值的基本方法,首先从方程求出在函数定义域内所有可能的极值点,然后按照函数极值的定义判断在这些点处是否取得极值解:1函数定义域为R令,得当或时,函数在和上是增函数;当时,函数在(2,2)上是减函数当时,函数有极大值,当时,函数有极小值2函数定义域为R令,得或当或时,函数在和上是减函数;当时,函数在(0,2)上是增函数当时,函数取得极小值,当时,函数取得极大值3函数的定义域为R令,得当或时,函数在和上是减函数;当时,函数在(1,1)上是增函数当时,函数取得极小值,当时,函数取得极大值说明:思维的周密性是解决
2、问题的基础,在解题过程中,要全面、系统地考虑问题,注意各种条件 综合运用,方可实现解题的正确性解答本题时应注意只是函数在处有极值的必要条件,如果再加之附近导数的符号相反,才能断定函数在处取得极值反映在解题上,错误判断极值点或漏掉极值点是学生经常出现的失误复杂函数的极值例 求下列函数的极值:1 ;2分析:利用求导的方法,先确定可能取到极值的点,然后依据极值的定义判定在函数的定义域内寻求可能取到极值的“可疑点”,除了确定其导数为零的点外,还必须确定函数定义域内所有不可导的点这两类点就是函数在定义内可能取到极值的全部“可疑点”解:1令,解得,但也可能是极值点当或时,函数在和上是增函数;当时,函数在(
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 导数 练习题 答案 函数 极值
限制150内