2017年福建省高考数学试卷(文科)(全国新课标Ⅰ)(共23页).doc
《2017年福建省高考数学试卷(文科)(全国新课标Ⅰ)(共23页).doc》由会员分享,可在线阅读,更多相关《2017年福建省高考数学试卷(文科)(全国新课标Ⅰ)(共23页).doc(24页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上2017年福建省高考数学试卷(文科)(全国新课标)一、选择题:本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1(5分)已知集合A=x|x2,B=x|32x0,则()AAB=x|xBAB=CAB=x|xDAUB=R2(5分)为评估一种农作物的种植效果,选了n块地作试验田这n块地的亩产量(单位:kg)分别是x1,x2,xn,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是()Ax1,x2,xn的平均数Bx1,x2,xn的标准差Cx1,x2,xn的最大值Dx1,x2,xn的中位数3(5分)下列各式的运算结果为纯虚数的是(
2、)Ai(1+i)2Bi2(1i)C(1+i)2Di(1+i)4(5分)如图,正方形ABCD内的图形来自中国古代的太极图正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称在正方形内随机取一点,则此点取自黑色部分的概率是()ABCD5(5分)已知F是双曲线C:x2=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则APF的面积为()ABCD6(5分)如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是()ABCD7(5分)设x,y满足约束条件,则z=x+y的最大值为()A0B1C2D38(5分
3、)函数y=的部分图象大致为()ABCD9(5分)已知函数f(x)=lnx+ln(2x),则()Af(x)在(0,2)单调递增Bf(x)在(0,2)单调递减Cy=f(x)的图象关于直线x=1对称Dy=f(x)的图象关于点(1,0)对称10(5分)如图程序框图是为了求出满足3n2n1000的最小偶数n,那么在和两个空白框中,可以分别填入()AA1000和n=n+1BA1000和n=n+2CA1000和n=n+1DA1000和n=n+211(5分)ABC的内角A,B,C的对边分别为a,b,c,已知sinB+sinA(sinCcosC)=0,a=2,c=,则C=()ABCD12(5分)设A,B是椭圆C
4、:+=1长轴的两个端点,若C上存在点M满足AMB=120,则m的取值范围是()A(0,19,+)B(0,9,+)C(0,14,+)D(0,4,+)二、填空题:本题共4小题,每小题5分,共20分。13(5分)已知向量=(1,2),=(m,1),若向量+与垂直,则m= 14(5分)曲线y=x2+在点(1,2)处的切线方程为 15(5分)已知(0,),tan=2,则cos()= 16(5分)已知三棱锥SABC的所有顶点都在球O的球面上,SC是球O的直径若平面SCA平面SCB,SA=AC,SB=BC,三棱锥SABC的体积为9,则球O的表面积为 三、解答题:共70分。解答应写出文字说明、证明过程或演算过
5、程第1721题为必选题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。(一)必考题:共60分。17(12分)记Sn为等比数列an的前n项和已知S2=2,S3=6(1)求an的通项公式;(2)求Sn,并判断Sn+1,Sn,Sn+2是否成等差数列18(12分)如图,在四棱锥PABCD中,ABCD,且BAP=CDP=90(1)证明:平面PAB平面PAD;(2)若PA=PD=AB=DC,APD=90,且四棱锥PABCD的体积为,求该四棱锥的侧面积19(12分)为了监控某种零件的一条生产线的生产过程,检验员每隔30min从该生产线上随机抽取一个零件,并测量其尺寸(单位:cm)下面是检
6、验员在一天内依次抽取的16个零件的尺寸:抽取次序12345678零件尺寸9.9510.129.969.9610.019.929.9810.04抽取次序910111213141516零件尺寸10.269.9110.1310.029.2210.0410.059.95经计算得 =xi=9.97,s=0.212,18.439,(xi)(i8.5)=2.78,其中xi为抽取的第i个零件的尺寸,i=1,2,16(1)求(xi,i)(i=1,2,16)的相关系数r,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小(若|r|0.25,则可以认为零件的尺寸不随生产过程的进行而系统地变大
7、或变小)(2)一天内抽检零件中,如果出现了尺寸在(3s,+3s)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查()从这一天抽检的结果看,是否需对当天的生产过程进行检查?()在(3s,+3s)之外的数据称为离群值,试剔除离群值,估计这条生产线当天生产的零件尺寸的均值与标准差(精确到0.01)附:样本(xi,yi)(i=1,2,n)的相关系数r=,0.0920(12分)设A,B为曲线C:y=上两点,A与B的横坐标之和为4(1)求直线AB的斜率;(2)设M为曲线C上一点,C在M处的切线与直线AB平行,且AMBM,求直线AB的方程21(12分)已知函数f(
8、x)=ex(exa)a2x(1)讨论f(x)的单调性;(2)若f(x)0,求a的取值范围(二)选考题:共10分。请考生在第22、23题中任选一题作答。如果多做,则按所做的第一题计分。选修4-4:坐标系与参数方程选讲(10分)22(10分)在直角坐标系xOy中,曲线C的参数方程为,(为参数),直线l的参数方程为 ,(t为参数)(1)若a=1,求C与l的交点坐标;(2)若C上的点到l距离的最大值为,求a选修4-5:不等式选讲(10分)23已知函数f(x)=x2+ax+4,g(x)=|x+1|+|x1|(1)当a=1时,求不等式f(x)g(x)的解集;(2)若不等式f(x)g(x)的解集包含1,1,
9、求a的取值范围2017年福建省高考数学试卷(文科)(全国新课标)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1(5分)已知集合A=x|x2,B=x|32x0,则()AAB=x|xBAB=CAB=x|xDAUB=R【解答】解:集合A=x|x2,B=x|32x0=x|x,AB=x|x,故A正确,B错误;AB=x|x2,故C,D错误;故选:A2(5分)为评估一种农作物的种植效果,选了n块地作试验田这n块地的亩产量(单位:kg)分别是x1,x2,xn,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是()Ax1,x2,
10、xn的平均数Bx1,x2,xn的标准差Cx1,x2,xn的最大值Dx1,x2,xn的中位数【解答】解:在A中,平均数是表示一组数据集中趋势的量数,它是反映数据集中趋势的一项指标,故A不可以用来评估这种农作物亩产量稳定程度;在B 中,标准差能反映一个数据集的离散程度,故B可以用来评估这种农作物亩产量稳定程度;在C中,最大值是一组数据最大的量,故C不可以用来评估这种农作物亩产量稳定程度;在D中,中位数将数据分成前半部分和后半部分,用来代表一组数据的“中等水平”,故D不可以用来评估这种农作物亩产量稳定程度故选:B3(5分)下列各式的运算结果为纯虚数的是()Ai(1+i)2Bi2(1i)C(1+i)2
11、Di(1+i)【解答】解:Ai(1+i)2=i2i=2,是实数Bi2(1i)=1+i,不是纯虚数C(1+i)2=2i为纯虚数Di(1+i)=i1不是纯虚数故选:C4(5分)如图,正方形ABCD内的图形来自中国古代的太极图正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称在正方形内随机取一点,则此点取自黑色部分的概率是()ABCD【解答】解:根据图象的对称性知,黑色部分为圆面积的一半,设圆的半径为1,则正方形的边长为2,则黑色部分的面积S=,则对应概率P=,故选:B5(5分)已知F是双曲线C:x2=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则APF的面积为()
12、ABCD【解答】解:由双曲线C:x2=1的右焦点F(2,0),PF与x轴垂直,设(2,y),y0,则y=3,则P(2,3),APPF,则丨AP丨=1,丨PF丨=3,APF的面积S=丨AP丨丨PF丨=,同理当y0时,则APF的面积S=,故选D6(5分)如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是()ABCD【解答】解:对于选项B,由于ABMQ,结合线面平行判定定理可知B不满足题意;对于选项C,由于ABMQ,结合线面平行判定定理可知C不满足题意;对于选项D,由于ABNQ,结合线面平行判定定理可知D不满足题意;所以选
13、项A满足题意,故选:A7(5分)设x,y满足约束条件,则z=x+y的最大值为()A0B1C2D3【解答】解:x,y满足约束条件的可行域如图:,则z=x+y经过可行域的A时,目标函数取得最大值,由解得A(3,0),所以z=x+y 的最大值为:3故选:D8(5分)函数y=的部分图象大致为()ABCD【解答】解:函数y=,可知函数是奇函数,排除选项B,当x=时,f()=,排除A,x=时,f()=0,排除D故选:C9(5分)已知函数f(x)=lnx+ln(2x),则()Af(x)在(0,2)单调递增Bf(x)在(0,2)单调递减Cy=f(x)的图象关于直线x=1对称Dy=f(x)的图象关于点(1,0)
14、对称【解答】解:函数f(x)=lnx+ln(2x),f(2x)=ln(2x)+lnx,即f(x)=f(2x),即y=f(x)的图象关于直线x=1对称,故选:C10(5分)如图程序框图是为了求出满足3n2n1000的最小偶数n,那么在和两个空白框中,可以分别填入()AA1000和n=n+1BA1000和n=n+2CA1000和n=n+1DA1000和n=n+2【解答】解:因为要求A1000时输出,且框图中在“否”时输出,所以“”内不能输入“A1000”,又要求n为偶数,且n的初始值为0,所以“”中n依次加2可保证其为偶数,所以D选项满足要求,故选:D11(5分)ABC的内角A,B,C的对边分别为
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2017 福建省 高考 数学试卷 文科 全国 新课 23
限制150内