《初二勾股定理习题.doc》由会员分享,可在线阅读,更多相关《初二勾股定理习题.doc(3页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上1. 直角三角形一直角边长为12,另两条边长均为自然数,则其周长为( ).(A)30 (B)28 (C)56 (D)不能确定2. 直角三角形的斜边比一直角边长2 cm,另一直角边长为6 cm,则它的斜边长(A)4 cm (B)8 cm (C)10 cm(D)12 cm3. 已知一个Rt的两边长分别为3和4,则第三边长的平方是() (A)25(B)14(C)7(D)7或254. 等腰三角形的腰长为10,底长为12,则其底边上的高为( ) (A)13 (B)8 (C)25 (D)645. 五根小木棒,其长度分别为7,15,20,24,25,现将他们摆成两个直角三角形,其中
2、正确的是( ) 6. 将直角三角形的三条边长同时扩大同一倍数, 得到的三角形是( )(A) 钝角三角形 (B) 锐角三角形 (C) 直角三角形 (D) 等腰三角形.7. 如图小方格都是边长为1的正方形,则四边形ABCD的面积是 ( )(A) 25 (B) 12.5 (C) 9 (D) 8.58. 三角形的三边长为,则这个三角形是( )(A) 等边三角形 (B) 钝角三角形 (C) 直角三角形 (D) 锐角三角形.9.ABC是某市在拆除违章建筑后的一块三角形空地.已知C=90,AC=30米,AB=50米,如果要在这块空地上种植草皮,按每平方米草皮元计算,那么共需要资金( ).(A)50元 (B)
3、600元 (C)1200元 (D)1500元10.如图,ABCD于B,ABD和BCE都是等腰直角三角形,如果CD=17,BE=5,那么AC的长为( ).(A)12 (B)7 (C)5 (D)13EABCD (第10题) (第11题) (第14题)11. 如图为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少需要_米.12. 在直角三角形中,斜边=2,则=_.13. 直角三角形的三边长为连续偶数,则其周长为 .14. 如图,在ABC中,C=90,BC=3,AC=4.以斜边AB为直径作半圆,则这个半圆的面积是_. (第15题) (第16题) (第17题)15. 如图,校园内
4、有两棵树,相距12米,一棵树高13米,另一棵树高8米,一只小鸟从一棵树的顶端飞到另一棵树的顶端,小鸟至少要飞_米.ABCD第18题图7cm16. 如图,ABC中,C=90,AB垂直平分线交BC于D若BC=8,AD=5,则AC等于_.17. 如图,四边形是正方形,垂直于,且=3,=4,阴影部分的面积是_.18. 如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边和长为7cm,则正方形A,B,C,D的面积之和为_cm2.19. 11世纪的一位阿拉伯数学家曾提出一个“鸟儿捉鱼”的问题:“小溪边长着两棵棕榈树,恰好隔岸相望.一棵树高是30肘尺(肘尺是古代的长度单位),另外一
5、棵高20肘尺;两棵棕榈树的树干间的距离是50肘尺.每棵树的树顶上都停着一只鸟.忽然,两只鸟同时看见棕榈树间的水面上游出一条鱼,它们立刻飞去抓鱼,并且同时到达目标.问这条鱼出现的地方离开比较高的棕榈树的树跟有多远?20. 如图,已知一等腰三角形的周长是16,底边上的高是4.求这个三角形各边的长.1.(D);2.(C);3.(D);4.(B);5.(C)6.(C);7.(B);8.(C);9.(B);10.(D)二、填空题(每小题3分,24分)11.7;12.8;13.24;14.; 15. 13;16.4;17.19;18.49;20. 设BD=x,则AB=8-x由勾股定理,可以得到AB2=BD2+AD2,也就是(8-x)2=x2+42.所以x=3,所以AB=AC=5,BC=621.作A点关于CD的对称点A,连结B A,与CD交于点E,则E点即为所求.总费用150万元.专心-专注-专业
限制150内