高三导数压轴题题型归纳.doc
《高三导数压轴题题型归纳.doc》由会员分享,可在线阅读,更多相关《高三导数压轴题题型归纳.doc(26页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上导数压轴题题型1. 高考命题回顾例1已知函数f(x)exln(xm)(2013全国新课标卷)(1)设x0是f(x)的极值点,求m,并讨论f(x)的单调性;(2)当m2时,证明f(x)0.(1)解f(x)exln(xm)f(x)exf(0)e00m1,定义域为x|x1,f(x)ex,显然f(x)在(1,0上单调递减,在0,)上单调递增(2)证明g(x)exln(x2),则g(x)ex(x2)h(x)g(x)ex(x2)h(x)ex0,所以h(x)是增函数,h(x)0至多只有一个实数根,又g()0,所以h(x)g(x)0的唯一实根在区间内,设g(x)0的根为t,则有g(t
2、)et0,所以,ett2et,当x(2,t)时,g(x)g(t)0,g(x)单调递增;所以g(x)ming(t)etln(t2)t0,当m2时,有ln(xm)ln(x2), 所以f(x)exln(xm)exln(x2)g(x)g(x)min0.例2已知函数满足(2012全国新课标)(1)求的解析式及单调区间;(2)若,求的最大值。(1) 令得: 得: 在上单调递增 得:的解析式为 且单调递增区间为,单调递减区间为(2)得 当时,在上单调递增 时,与矛盾 当时, 得:当时, 令;则 当时, 当时,的最大值为例3已知函数,曲线在点处的切线方程为。(2011全国新课标)()求、的值;()如果当,且时
3、,求的取值范围。解() 由于直线的斜率为,且过点,故即解得,。()由()知,所以。考虑函数,则。(i)设,由知,当时,h(x)递减。而 故当时, ,可得;当x(1,+)时,h(x)0从而当x0,且x1时,f(x)-(+)0,即f(x)+.(ii)设0k0,故 (x)0,而h(1)=0,故当x(1,)时,h(x)0,可得h(x)0,而h(1)=0,故当x (1,+)时,h(x)0,可得 h(x)0时恒成立,求正整数k的最大值.例14(创新题型)设函数f(x)=ex+sinx,g(x)=ax,F(x)=f(x)g(x).()若x=0是F(x)的极值点,求a的值;()当 a=1时,设P(x1,f(x
4、1), Q(x2, g(x 2)(x10,x20), 且PQ/x轴,求P、Q两点间的最短距离;()若x0时,函数y=F(x)的图象恒在y=F(x)的图象上方,求实数a的取值范围例15(图像分析,综合应用) 已知函数,在区间上有最大值4,最小值1,设()求的值;()不等式在上恒成立,求实数的范围;()方程有三个不同的实数解,求实数的范围导数与数列例16(创新型问题)设函数,是的一个极大值点若,求的取值范围;当是给定的实常数,设是的3个极值点,问是否存在实数,可找到,使得的某种排列(其中=)依次成等差数列?若存在,求所有的及相应的;若不存在,说明理由导数与曲线新题型例17(形数转换)已知函数, .
5、(1)若, 函数 在其定义域是增函数,求b的取值范围;(2)在(1)的结论下,设函数的最小值;(3)设函数的图象C1与函数的图象C2交于点P、Q,过线段PQ的中点R作轴的垂线分别交C1、C2于点、,问是否存在点R,使C1在处的切线与C2在处的切线平行?若存在,求出R的横坐标;若不存在,请说明理由.例18(全综合应用)已知函数.(1)是否存在点,使得函数的图像上任意一点P关于点M对称的点Q也在函数的图像上?若存在,求出点M的坐标;若不存在,请说明理由;(2)定义,其中,求;(3)在(2)的条件下,令,若不等式对且恒成立,求实数的取值范围.导数与三角函数综合例19(换元替代,消除三角)设函数(),
6、其中()当时,求曲线在点处的切线方程;()当时,求函数的极大值和极小值;()当, 时,若不等式对任意的恒成立,求的值。创新问题积累例20已知函数. I、求的极值. II、求证的图象是中心对称图形.III、设的定义域为,是否存在.当时,的取值范围是?若存在,求实数、的值;若不存在,说明理由导数压轴题题型归纳 参考答案例1解:(1)时,由,解得. 的变化情况如下表:01-0+0极小值0 所以当时,有最小值.(2)证明:曲线在点处的切线斜率 曲线在点P处的切线方程为. 令,得, ,即. 又, 所以.例2,令当时,当,函数单调递减;当,函数单调递增.当时,由,即,解得.当时,恒成立,此时,函数单调递减
7、;当时,,时,函数单调递减;时,函数单调递增;时,函数单调递减.当时,当,函数单调递减;当,函数单调递增.综上所述:当时,函数在单调递减,单调递增;当时,恒成立,此时,函数在单调递减;当时,函数在递减,递增,递减.当时,在(0,1)上是减函数,在(1,2)上是增函数,所以对任意,有,又已知存在,使,所以,()又当时,与()矛盾;当时,也与()矛盾;当时,.综上,实数的取值范围是.例3解:根据题意,得即解得 所以 令,即得12+增极大值减极小值增2因为,所以当时,则对于区间上任意两个自变量的值,都有,所以所以的最小值为4因为点不在曲线上,所以可设切点为则因为,所以切线的斜率为则=,即因为过点可作
8、曲线的三条切线,所以方程有三个不同的实数解所以函数有三个不同的零点则令,则或02+增极大值减极小值增则 ,即,解得例4解:, 令(舍去)单调递增;当递减. 上的极大值.由得设,依题意知上恒成立, 上单增,要使不等式成立,当且仅当 由令,当上递增;上递减,而,恰有两个不同实根等价于 例5解:a,令得或,函数的单调增区间为.证明:当时, ,又不妨设 , 要比较与的大小,即比较与的大小,又, 即比较与的大小 令,则,在上位增函数又, ,即 , 由题意得在区间上是减函数 当, 由在恒成立设,则在上为增函数,. 当, 由在恒成立设,为增函数,综上:a的取值范围为.例6解:(1),, 即在上恒成立设,,时
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 导数 压轴 题型 归纳
限制150内