《2016年广东省广州市白云区中考数学一模试卷(共29页).doc》由会员分享,可在线阅读,更多相关《2016年广东省广州市白云区中考数学一模试卷(共29页).doc(30页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上2016年广东省广州市白云区中考数学一模试卷一、选择题(本大题共10小题,每小题3分,满分30分在每小题给出的四个选项中,只有一项是符合题目要求的)1(3分)0.5的相反数是()A0.5B0.5C2D22(3分)已知点C是线段AB上的一点,不能确定点C是AB中点的条件是()AAC=CBBAC=ABCAB=2BCDAC+CB=AB3(3分)下列各组的两项是同类项的为()A3m2n2与m2n3Bxy与2yxC53与a3D3x2y2与4x2z24(3分)如图,直线AB和CD相交于点O,若AOD=134,则AOC的度数为()A134B144C46D325(3分)一个正方形的面
2、积为2,则它的边长是()A4BCD6(3分)为了了解一批电视机的使用寿命,从中抽取100台电视机进行试验,这个问题的样本是()A这批电视机B这批电视机的使用寿命C抽取的100台电视机的使用寿命D100台7(3分)计算(2x+1)(3x2)的结果为()A6x3+1B6x33C6x33x2D6x3+3x28(3分)若一个多边形的每个外角都等于45,则它是()A六边形B八边形C九边形D十二边形9(3分)如图,正比例函数y1=k1x和反比例函数y2=的图象都经过点A(2,1),若y1y2,则x的取值范围是()A1x0Bx2C2x0或x2Dx2或0x210(3分)如图,ABC周长为36cm,把其边AC对
3、折,使点C、A重合,折痕交BC边于点D,交AC边于点E,连结AD,若AE=6cm,则ABD的周长是()A24cmB26cmC28cmD30cm二、填空题(本大题共6小题,每小题3分,满分18分)11(3分)D、E、F分别是ABC各边的中点若ABC的周长是12cm,则DEF的周长是cm12(3分)平面直角坐标系下有序数对(2xy,x+y)表示的点为(5,4),则x=y=13(3分)化简=14(3分)直线y=kx+b中,k0,b0,则此直线经过第象限15(3分)如果菱形两邻角之比为1:2,较短的对角线长为8,则其周长为16(3分)在平面直角坐标系中,RtOAB的顶点A的坐标为,若将OAB绕O点,逆
4、时针旋转60后,B点到达B点,则点B的坐标是三、解答题(本大题共9小题,满分102分解答应写出文字说明、证明过程或演算步骤)17(10分)解不等式组18(10分)如图,E、F分别是ABCD的边BC、AD上的两点,AEB=FCB求证:BE=DF19(12分)如图是平面直角坐标系及其中的一条直线,该直线还经过点C(3,10)(1)求这条直线的解析式;(2)若该直线分别与x轴、y轴交于A、B两点,点P在x轴上,且SPAB=6SOAB,求点P的坐标20(10分)图是某手机生产厂第一季度三个月产量统计图,图是这三个月的产量与第一季度总产量的比例分布统计图,统计员在制作图、图时漏填了部分数据(1)该厂二月
5、份生产的手机产量占第一季度的比例为%;(2)求该厂三月份生产手机的产量;(3)请求出图中一月份圆心角的度数21(9分)在一个不透明的袋子中装有三张分别标有1、2、3数字的卡片(卡片除数字外完全相同)(1)从袋中任意抽取一张卡片,则抽出的是偶数的概率为;(2)从袋中任意抽取二张卡片,求被抽取的两张卡片构成两位数是奇数的概率22(11分)我国水资源比较缺乏,人均水量约为世界人均水量的四分之一,其中西北地区缺水尤为严重一村民为了蓄水,他把一块矩形白铁皮四个角各切去一个同样大小的小正方形后制作一个无盖水箱用于接雨水已知白铁皮的长为280cm,宽为160cm(如图)(1)若水箱的底面积为16000cm2
6、,请求出切去的小正方形边长;(2)对(1)中的水箱,若盛满水,这时水量是多少升?(注:1升水=1000cm3水)23(12分)如图1,延长O的直径AB至点C,使得BC=AB,点P是O上半部分的一个动点(点P不与A、B重合),连结OP,CP(1)C的最大度数为;(2)当O的半径为3时,OPC的面积有没有最大值?若有,说明原因并求出最大值;若没有,请说明理由;(3)如图2,延长PO交O于点D,连结DB,当CP=DB时,求证:CP是O的切线24(14分)已知,如图,抛物线y=x2+ax+b与x轴从左至右交于A、B两点,与y轴正半轴交于点C设OCB=,OCA=,且tantan=2,OC2=OAOB(1
7、)ABC是否为直角三角形?若是,请给出证明;若不是,请说明理由;(2)求抛物线的解析式;(3)若抛物线的顶点为P,求四边形ABPC的面积25(14分)如图:ABC中,C=45,点D在AC上,且ADB=60,AB为BCD外接圆的切线(1)用尺规作出BCD的外接圆(保留作图痕迹,可不写作法);(2)求A的度数;(3)求的值2016年广东省广州市白云区中考数学一模试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,满分30分在每小题给出的四个选项中,只有一项是符合题目要求的)1(3分)(2016白云区一模)0.5的相反数是()A0.5B0.5C2D2【考点】相反数菁优网版权所有【分析】根
8、据只有符号不同的两个数互为相反数,可得答案【解答】解:0.5的相反数是0.5,故选:A【点评】本题考查了相反数,在一个数的前面加上负号就是这个数相反数2(3分)(2016白云区一模)已知点C是线段AB上的一点,不能确定点C是AB中点的条件是()AAC=CBBAC=ABCAB=2BCDAC+CB=AB【考点】两点间的距离菁优网版权所有【分析】根据线段中点的定义对每一项分别进行分析,即可得出答案【解答】解:A、若AC=CB,则C是线段AB中点;B、若AC=AB,则C是线段AB中点;C、若AB=2BC,则C是线段AB中点;D、AC+BC=AB,C可是线段AB是任意一点,则不能确定C是AB中点的条件是
9、D故选D【点评】此题考查了两点间的距离,理解线段中点的概念是本题的关键3(3分)(2016白云区一模)下列各组的两项是同类项的为()A3m2n2与m2n3Bxy与2yxC53与a3D3x2y2与4x2z2【考点】同类项菁优网版权所有【分析】依据同类项的定义回答即可【解答】解:A、3m2n2与m2n3字母n的指数不同不是同类项,故A错误;B、xy与2yx是同类项,故B正确;C、53与a3所含字母不同,不是同类项,故C错误;D、3x2y2与4x2z2所含的字母不同,不是同类项,故D错误故选:B【点评】本题主要考查的是同类项的定义,掌握同类项的定义是解题的关键4(3分)(2016白云区一模)如图,直
10、线AB和CD相交于点O,若AOD=134,则AOC的度数为()A134B144C46D32【考点】对顶角、邻补角菁优网版权所有【分析】根据邻补角之和等于180进行计算即可【解答】解:AOD+AOC=180,AOC=180134=46,故选:C【点评】本题考查的是对顶角、邻补角的概念和性质,掌握对顶角相等、邻补角之和等于180是解题的关键5(3分)(2016白云区一模)一个正方形的面积为2,则它的边长是()A4BCD【考点】算术平方根菁优网版权所有【分析】依据算术平方根的定义和性质求解即可【解答】解:设它的边长为x,则x2=2,所以x=所以它的边长是故选:D【点评】本题主要考查的是算术平方根的定
11、义,掌握算术平方根的定义是解题的关键6(3分)(2016白云区一模)为了了解一批电视机的使用寿命,从中抽取100台电视机进行试验,这个问题的样本是()A这批电视机B这批电视机的使用寿命C抽取的100台电视机的使用寿命D100台【考点】总体、个体、样本、样本容量菁优网版权所有【专题】应用题【分析】本题考查的是确定总体解此类题需要注意“考查对象实际应是表示事物某一特征的数据,而非考查的事物”我们在区分总体、个体、样本、样本容量这四个概念时,首先找出考查的对象,从而找出总体、个体,再根据被收集数据的这一部分对象找出样本【解答】解:本题考查的对象是了解一批电视机的使用寿命,故样本是所抽取的100台电视
12、机的使用寿命故选:C【点评】解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象总体、个体与样本的考查对象是相同的,所不同的是范围的大小样本容量是样本中包含的个体的数目,不能带单位7(3分)(2016白云区一模)计算(2x+1)(3x2)的结果为()A6x3+1B6x33C6x33x2D6x3+3x2【考点】单项式乘多项式菁优网版权所有【分析】依据单项式乘多项式法则进行计算即可【解答】解:原式=6x33x2故选:C【点评】本题主要考查的是单项式乘多项式,熟练掌握单项式乘多项式法则是解题的关键8(3分)(2016白云区一模)若一个多边形的每个外角都等于45,则它是()A六边形B八边形C九
13、边形D十二边形【考点】多边形内角与外角菁优网版权所有【分析】因为多边形的外角和是360,正多边形的每个外角都相等,且一个外角的度数为45,由此即可求出答案【解答】解:36045=8,则正多边形的边数为8,故选B【点评】本题主要考查了多边形的外角和定理,已知正多边形的外角求正多边形的边数是一个考试中经常出现的问题9(3分)(2016白云区一模)如图,正比例函数y1=k1x和反比例函数y2=的图象都经过点A(2,1),若y1y2,则x的取值范围是()A1x0Bx2C2x0或x2Dx2或0x2【考点】反比例函数与一次函数的交点问题菁优网版权所有【分析】根据对称性先确定它们的交点坐标,然后根据一次函数
14、图象在反比例函数图象的上方,由此即可解决问题【解答】解:如图,点A坐标(2,1),又正比例函数y1=k1x和反比例函数y2=都是关于原点对称,它们的交点A、B关于原点对称,点B坐标(2,1),由图象可知,y1y2时,x2,或0x2故选D【点评】本题考查一次函数与反比例函数图象的交点等知识,理解A、B关于原点对称是解题的关键,学会利用图象确定自变量的取值范围,属于中考常考题型10(3分)(2016白云区一模)如图,ABC周长为36cm,把其边AC对折,使点C、A重合,折痕交BC边于点D,交AC边于点E,连结AD,若AE=6cm,则ABD的周长是()A24cmB26cmC28cmD30cm【考点】
15、翻折变换(折叠问题)菁优网版权所有【分析】根据翻折变换的性质可得AE=EC,AD=CD,然后求出ABD的周长=AB+BC,代入数据计算即可得解【解答】解:ABC的边AC对折顶点C和点A重合,AE=EC,AD=CD,ABD的周长=AB+BD+AD=AB+BD+CD=AB+BC,AE=6cm,AC=AE+EC=6+6=12,ABC的周长为36cm,AB+BC=3612=24cm,ABD的周长是24cm故选A【点评】本题考查了翻折变换的性质,熟记翻折前后的两个图形能够完全重合得到相等的边是解题的关键二、填空题(本大题共6小题,每小题3分,满分18分)11(3分)(2016白云区一模)D、E、F分别是
16、ABC各边的中点若ABC的周长是12cm,则DEF的周长是6cm【考点】三角形中位线定理菁优网版权所有【分析】由于D、E分别是AB、BC的中点,则DE是ABC的中位线,那么DE=AC,同理有EF=AB,DF=BC,于是易求DEF的周长【解答】解:如图所示,D、E分别是AB、BC的中点,DE是ABC的中位线,DE=AC,同理有EF=AB,DF=BC,DEF的周长=(AC+BC+AB)=12=6cm故答案为:6【点评】本题考查了三角形中位线定理解题的关键是根据中位线定理得出边之间的数量关系12(3分)(2016白云区一模)平面直角坐标系下有序数对(2xy,x+y)表示的点为(5,4),则x=3y=
17、1【考点】点的坐标菁优网版权所有【分析】根据题意可得方程组,解方程组可得答案【解答】解:由题意得:,解得,故答案为:3;1【点评】此题主要考查了点的坐标,关键是正确理解题意,列出方程组13(3分)(2016白云区一模)化简=【考点】约分菁优网版权所有【分析】首先把分子分母分解因式,再约去分子分母的公因式即可【解答】解:原式=,故答案为:【点评】此题主要考查了分式的约分,关键是正确把分子分母分解因式,找出公因式14(3分)(2016白云区一模)直线y=kx+b中,k0,b0,则此直线经过第一、二、四象限【考点】一次函数图象与系数的关系菁优网版权所有【分析】根据一次函数图象与系数的关系进行判断【解
18、答】解:k0,b0,直线y=kx+b经过第一、二、四象限故答案为:一、二、四【点评】本题考查了一次函数图象与系数的关系:k0,b0y=kx+b的图象在一、二、三象限;k0,b0y=kx+b的图象在一、三、四象限;k0,b0y=kx+b的图象在一、二、四象限;k0,b0y=kx+b的图象在二、三、四象限15(3分)(2016白云区一模)如果菱形两邻角之比为1:2,较短的对角线长为8,则其周长为32【考点】菱形的性质菁优网版权所有【分析】根据菱形的性质及已知可求得ADB是等边三角形,从而可得到菱形的边长,进而可求出其周长【解答】解:四边形ABCD是菱形,ABCD,A+ADC=180,A:ADC=1
19、:2,A=60,ADC=120,AD=AB,ADB为等边三角形,AD=BD=8,菱形的周长=48=32,故答案为32【点评】此题主要考查了菱形的性质以及等边三角形的判定等知识,根据等边三角形的性质求解是解题关键16(3分)(2010安顺)在平面直角坐标系中,RtOAB的顶点A的坐标为,若将OAB绕O点,逆时针旋转60后,B点到达B点,则点B的坐标是()【考点】坐标与图形变化旋转菁优网版权所有【专题】压轴题【分析】根据A点坐标可知AOB=30,因此旋转后OA在y轴上如图所示作BCy轴于C点,运用三角函数求出BC、OC的长度即可确定B的坐标【解答】解:将OAB绕O点,逆时针旋转60后,位置如图所示
20、,作BCy轴于C点,A的坐标为,OB=,AB=1,AOB=30,OB=,BOC=30,BC=,OC=,B(,)【点评】本题涉及图形旋转,体现了新课标的精神,抓住旋转的三要素:旋转中心O,旋转方向逆时针,旋转角度60,通过画图计算得B坐标三、解答题(本大题共9小题,满分102分解答应写出文字说明、证明过程或演算步骤)17(10分)(2016白云区一模)解不等式组【考点】解一元一次不等式组菁优网版权所有【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集【解答】解:解不等式x+35,得:x2,解不等式3x17,得:x2,故不等组的解集为
21、:2x2【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键18(10分)(2016白云区一模)如图,E、F分别是ABCD的边BC、AD上的两点,AEB=FCB求证:BE=DF【考点】平行四边形的性质;全等三角形的判定与性质菁优网版权所有【专题】证明题【分析】根据平行四边形的性质得出AB=CD,B=D,根据AAS证出ABECDF即可推出答案【解答】证明:四边形ABCD为平行四边形,AB=CD,B=D又ADCB,DFC=FCB,又AEB=FCB,AEB=CFD在ABE和CDF中,ABECDF(AA
22、S),BE=DF【点评】本题主要考查对平行四边形的性质,全等三角形的性质和判定等知识点的理解和掌握,能根据性质证出ABECDF是证此题的关键19(12分)(2016白云区一模)如图是平面直角坐标系及其中的一条直线,该直线还经过点C(3,10)(1)求这条直线的解析式;(2)若该直线分别与x轴、y轴交于A、B两点,点P在x轴上,且SPAB=6SOAB,求点P的坐标【考点】待定系数法求一次函数解析式;一次函数图象上点的坐标特征菁优网版权所有【分析】(1)待定系数法求解可得;(2)先根据直线解析式求得A、B点坐标,进而可得SOAB=,设点P的坐标为P(m,0),用含m的式子表示出SPAB,根据SPA
23、B=6SOAB可得关于m的方程,解方程即可得【解答】解:(1)设直线的解析式为:y=kx+b,由图可知,直线经过点(1,2),又已知经过点C(3,10),分别把坐标代入解析式中,得:,解得,直线的解析式为:y=3x1;(2)由y=3x1,令y=0,解得x=;令x=0,解得y=1A、B两点的坐标分别为A(,0)、B(0,1)SOAB=OAOB=1=设点P的坐标为P(m,0),则SPAB=PAOB=|m()|1=|m+|,由SPAB=6SOAB,得|m+|=6,从而得m+=2或m+=2,m=或m=,即点P的坐标为P(,0)或P(,0)【点评】本题主要考查待定系数法求函数解析式及解方程的能力,根据三
24、角形面积间的关系得出关于m的绝对值方程是解题的关键20(10分)(2016白云区一模)图是某手机生产厂第一季度三个月产量统计图,图是这三个月的产量与第一季度总产量的比例分布统计图,统计员在制作图、图时漏填了部分数据(1)该厂二月份生产的手机产量占第一季度的比例为34%;(2)求该厂三月份生产手机的产量;(3)请求出图中一月份圆心角的度数【考点】条形统计图;扇形统计图菁优网版权所有【分析】(1)用1减去一月、三月百分比可得;(2)根据一月产量和百分比求出一季度总产量,将总产量乘以三月份百分比可得;(3)360一月份百分比即可【解答】解:(1)该厂二月份生产的手机产量占第一季度的比例为130%36
25、%=34%;(2)该厂第一季度总产量为:150030%=5000(部),500036%=1800(部);答:该厂三月份生产手机为1800部;(3)36030%=108答:图中一月份圆心角的度数为:108故答案为:(1)34【点评】本题主要考查了条形统计图以及扇形统计图条形图能清楚地表示出每个项目的具体数目,扇形图能清楚地表示出各部分在总体中所占的百分比,折线图能清楚反映事物的变化情况我们在选择统计图整理数据时,应注意“扬长避短”21(9分)(2016白云区一模)在一个不透明的袋子中装有三张分别标有1、2、3数字的卡片(卡片除数字外完全相同)(1)从袋中任意抽取一张卡片,则抽出的是偶数的概率为;
26、(2)从袋中任意抽取二张卡片,求被抽取的两张卡片构成两位数是奇数的概率【考点】列表法与树状图法;概率公式菁优网版权所有【分析】(1)求出1,2,3三个数中偶数的个数,再直接根据概率公式求解即可;(2)分别列举出可能组成的两位数,再根据概率公式解答即可【解答】解:(1)随机地抽取一张,所有可能出现的结果有3个,每个结果发生的可能性都相等,其中卡片上的数字为偶数的结果有1个故从袋中任意抽取一张卡片,则抽出的是偶数的概率为:;故答案为:;(2)解法一:列举法被抽取的两张卡片所有可能是:1、2;1、3;2、3而每一种情况,都可构成两个两位数,即是:12,21,13,31,23,32,共6个两位数其中是
27、奇数的为:21,13,31,23共4个,P(奇数)=解法二:列表法123112132212333132从表中看出,共有6个两位数,其中是奇数的为:13,21,23,31共4个,P(奇数)=解法三:树状图法由树状图可知,构成的两位数共有6个,分别是:12,13,21,23,31,32,其中是奇数的为:13,21,23,31共4个,P(奇数)=【点评】此题主要考查了列举法求概率,用到的知识点为:概率=所求情况数与总情况数之比得到所求的情况数是解决本题的易错点22(11分)(2016白云区一模)我国水资源比较缺乏,人均水量约为世界人均水量的四分之一,其中西北地区缺水尤为严重一村民为了蓄水,他把一块矩
28、形白铁皮四个角各切去一个同样大小的小正方形后制作一个无盖水箱用于接雨水已知白铁皮的长为280cm,宽为160cm(如图)(1)若水箱的底面积为16000cm2,请求出切去的小正方形边长;(2)对(1)中的水箱,若盛满水,这时水量是多少升?(注:1升水=1000cm3水)【考点】一元二次方程的应用菁优网版权所有【分析】(1)设切去的小正方形的边长为xcm,然后用含x的式子表示水箱底面的长和宽,然后依据矩形的面积公式列方程求解即可;(2)依据正方体的体积=底面积高求得水的体积,然后再依据1升水=1000cm3水求解即可【解答】解:(1)设切去的小正方形的边长为xcm根据题意,得:(2802x)(1
29、602x)=16000,化简整理,得:x2220x+7200=0,解得x=40或x=180(舍去)答:切去的小正方形边长为40cm(2)在(1)的条件下,水箱的容积=1600040=cm31000=640(升)答:这时水量为640升【点评】本题主要考查的是一元二次方程的应用,用含x的式子表示水箱底面的长和宽是解题的关键23(12分)(2016白云区一模)如图1,延长O的直径AB至点C,使得BC=AB,点P是O上半部分的一个动点(点P不与A、B重合),连结OP,CP(1)C的最大度数为30;(2)当O的半径为3时,OPC的面积有没有最大值?若有,说明原因并求出最大值;若没有,请说明理由;(3)如
30、图2,延长PO交O于点D,连结DB,当CP=DB时,求证:CP是O的切线【考点】圆的综合题菁优网版权所有【分析】(1)当PC与O相切时,OCP的度数最大,根据切线的性质即可求得;(2)由OPC的边OC是定值,得到当OC边上的高为最大值时,OPC的面积最大,当POOC时,取得最大值,即此时OC边上的高最大,于是得到结论;(3)根据全等三角形的性质得到AP=DB,根据等腰三角形的性质得到A=C,得到CO=OB+OB=AB,推出APBCPO,根据全等三角形的性质得到CPO=APB,根据圆周角定理得到APB=90,即可得到结论【解答】解:(1)当PC与O相切时,OCP最大如图1,所示:sinOCP=,
31、OCP=30OCP的最大度数为30,故答案为:30;(2)有最大值,理由:OPC的边OC是定值,当OC边上的高为最大值时,OPC的面积最大,而点P在O上半圆上运动,当POOC时,取得最大值,即此时OC边上的高最大,也就是高为半径长,最大值SOPC=OCOP=63=9;(3)证明:连结AP,BP,如图2,在OAP与OBD中,OAPOBD,AP=DB,PC=DB,AP=PC,PA=PC,A=C,BC=AB=OB,CO=OB+OB=AB,在APB和CPO中,APBCPO,CPO=APB,AB为直径,APB=90,CPO=90,PC切O于点P,即CP是O的切线【点评】本题考查了切线的判定,全等三角形的
32、判定和性质,等腰三角形的性质,圆周角定理,三角形面积的最值,知道PC与O相切时,OCP最大是解决(1)的关键,知道当OC边上的高为最大值时,OPC的面积最大是解决(2)的关键24(14分)(2016白云区一模)已知,如图,抛物线y=x2+ax+b与x轴从左至右交于A、B两点,与y轴正半轴交于点C设OCB=,OCA=,且tantan=2,OC2=OAOB(1)ABC是否为直角三角形?若是,请给出证明;若不是,请说明理由;(2)求抛物线的解析式;(3)若抛物线的顶点为P,求四边形ABPC的面积【考点】二次函数综合题菁优网版权所有【分析】(1)利用已知得出RtBOCRtCOA,进而得出OCA+OCB
33、=90,即可得出答案;(2)由题意可得,方程x2+ax+b=0有两个不同的实数根,进而得出C点坐标,可得出b的值,再利用tan=,tan=,由tantan=2,得出a的值进而得出答案;(3)作PFx轴于点F,根据S四边形ABPC=SPDBSCDA=DBPFDAOC,进而得出答案【解答】解:(1)ABC是直角三角形理由如下:OC2=OAOB,=,又BOC=COA=90,RtBOCRtCOA,OCB=OAC;又OCA+OAC=90,OCA+OCB=90,即ACB=90,ABC是直角三角形;(2)抛物线与x轴交于A、B两点,方程x2+ax+b=0有两个不同的实数根设这两个根分别为x1、x2,且x1x
34、2,显然,x10,x20,得A、B两点的坐标分别为A(x1,0)、B(x2,0)由根与系数的关系,有x1+x2=a,x1x2=b对于抛物线y=x2+ax+b,当x=0时,y=b,C点的坐标为C(0,b);由已知条件OC2=OAOB,得b2=(x1)x2,即b2=x1x2,b2=b,点C在y轴的正半轴上,b0,从而得b=1tan=,tan=,由tantan=2,得=2,即OBOA=2OC,得x2(x1)=2b,x2+x1=2b,即a=2b,a=2抛物线的解析式为:y=x2+2x+1;(3)由抛物线的解析式y=x2+2x+1配方得:y=(x1)2+2,其顶点P的坐标为P(1,2)解方程x2+2x+
35、1=0,得x1=1,x2=1+,A(1,0),B(1+,0)解法一:设过P、C两点的直线与x轴交于点D,直线的解析式为:y=kx+1,把P(1,2)坐标代入,得k=1,直线PC:y=x+1,当y=0时,x=1,即点D的坐标为D(1,0)11,点D在点A的左边,作PFx轴于点F,S四边形ABPC=SPDBSCDA=DBPFDAOC=(1+)+12(1)+11=,即四边形ABPC的面积为解法二:过点P作PFx轴于点F,则S四边形ABPC=SOAC+S梯形COFP+SPFB=OAOC+(OC+PF)OF+FBPF,=(1)1+(1+2)1+(1+1)2=;即四边形ABPC的面积为【点评】此题主要考查
36、了二次函数综合以及四边形面积求法和根与系数的关系以及相似三角形的判定与性质等知识,正确利用已知OC2=OAOB,得出b的值是解题关键25(14分)(2016白云区一模)如图:ABC中,C=45,点D在AC上,且ADB=60,AB为BCD外接圆的切线(1)用尺规作出BCD的外接圆(保留作图痕迹,可不写作法);(2)求A的度数;(3)求的值【考点】圆的综合题菁优网版权所有【分析】(1)利用三角形外接圆的圆心是各边垂直平分线的交点即可画出图形(2)只要证明BOD是等腰直角三角形即可推出ABD=DBO=45,利用三角形内角和定理即可解决问题(3)过点B作BEAC,垂足为点E,设DE=x,则BD=2x,
37、BE=x,用x的代数式表示AD、DC即可解决问题【解答】解:(1)作BC的垂直平分线MN,作BD的垂直平分线HF,MN与FH的交点为O,以点O为圆心OB为作O即可如图所示,(2)连结OB、OD,由切线性质,知ABO=90ACB=45,BOD=90,(同弧所对的圆周角等于它所对的圆心角的一半)OB=OD,OBD=ODB=45,由ABO=90,得ABD=45,A=180ABDADB=1804560=75;(3)过点B作BEAC,垂足为点E,在RtBCE中,ACB=45,EBC=45,BE=CE在RtBDE中,DBE=90EDB=30,BD=2DE,设DE=x,则BD=2x,BE=xDC=CEDE=BEDE=(1)xAE=ADDE=ADx在ABC和ADB中,ABD=ACB=45,A为公共角,ABCADB,=,即AB2=ACAD,即AB2=(AD+DC)AD=AD2+AD(1)x在RtABE中,由勾股定理,得AB2=AE2+BE2=(ADx)2+(x)2由、,得AD2+AD(1)x=(ADx)2+(x)2,化简整理,解得AD=2(1)x=2,=2【点评】本题考查圆的综合题、相似三角形的判定和性质、圆周角定理、等腰直角三角形的判定和性质等知识,解题的关键是利用参数,求出相应的线段,属于中考常考题型专心-专注-专业
限制150内