导数及其应用高考题精选(共13页).doc
《导数及其应用高考题精选(共13页).doc》由会员分享,可在线阅读,更多相关《导数及其应用高考题精选(共13页).doc(13页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上 导数及其应用高考题精选1.(2010 海南高考理科T3)曲线在点处的切线方程为( )(A) (B) (C) (D)【命题立意】本题主要考查导数的几何意义,以及熟练运用导数的运算法则进行求解.【思路点拨】先求出导函数,解出斜率,然后根据点斜式求出切线方程.【规范解答】选A.因为 ,所以,在点处的切线斜率,所以,切线方程为,即,故选A.2.(2010山东高考文科8)已知某生产厂家的年利润(单位:万元)与年产量(单位:万件)的函数关系式为,则使该生产厂家获得最大年利润的年产量为( )(A) 13万件 (B) 11万件(C) 9万件 (D) 7万件【命题立意】本题考查利用导
2、数解决生活中的优化问题,考查了考生的分析问题解决问题能力和运算求解能力.【思路点拨】利用导数求函数的最值.【规范解答】选C,,令得或(舍去),当时;当时,故当时函数有极大值,也是最大值,故选C.3.(2010山东高考理科7)由曲线y=,y=围成的封闭图形面积为( )(A)(B) (C) (D) 【命题立意】本题考查定积分的基础知识,由定积分求曲线围成封闭图形的面积,考查了考生的想象能力、推理论证能力和运算求解能力. 【思路点拨】先求出曲线y=,y=的交点坐标,再利用定积分求面积. 【规范解答】选A,由题意得: 曲线y=,y=的交点坐标为(0,0),(1,1),故所求封闭图形的面积为,故选A.4
3、.(2010辽宁高考理科10)已知点P在曲线y=上,为曲线在点P处的切线的倾斜角,则的取值范围是( ) (A)0,) (B) (D) 【命题立意】本题考查了导数的几何意义,考查了基本等式,函数的值域,直线的倾斜角与斜率。【思路点拨】先求导数的值域,即tan的范围,再根据正切函数的性质求的范围。【规范解答】选D.5.(2010湖南高考理科4)等于( )A、 B、 C、 D、【命题立意】考查积分的概念和基本运算.【思路点拨】记住的原函数.【规范解答】选D .=(lnx+c)|42=(ln4+c)-(ln2+c)=ln2.【方法技巧】关键是记住被积函数的原函数.6.(2010江苏高考8)函数y=x2
4、(x0)的图像在点(ak,ak2)处的切线与x轴的交点的横坐标为ak+1,,若a1=16,则a1+a3+a5的值是_【命题立意】本题考查导数的几何意义、函数的切线方程以及数列的通项等内容。【思路点拨】先由导数的几何意义求得函数y=x2(x0)的图像在点(ak,ak2)处的切线的斜率,然后求得切线方程,再由,即可求得切线与x轴交点的横坐标。【规范解答】由y=x2(x0)得,所以函数y=x2(x0)在点(ak,ak2)处的切线方程为:当时,解得,所以.【答案】217.(2010江苏高考4)将边长为1m正三角形薄片沿一条平行于某边的直线剪成两块,其中一块是梯形,记,则S的最小值是_ _。【命题立意】
5、 本题考查函数中的建模在实际问题中的应用,以及等价转化思想。【思路点拨】可设剪成的小正三角形的边长为,然后用分别表示梯形的周长和面积,从而将S用x表示,利用函数的观点解决.【规范解答】设剪成的小正三角形的边长为,则:方法一:利用导数的方法求最小值。,当时,递减;当时,递增;故当时,S的最小值是。方法二:利用函数的方法求最小值令,则:故当时,S的最小值是。【答案】【方法技巧】函数的最值是函数最重要的性质之一,高考不但在填空题中考查,还会在应用题、函数导数的的综合解答题中考察。高中阶段,常见的求函数的最值的常用方法有:换元法、有界性法、数形结合法、导数法和基本不等式法。8.(2010陕西高考理科3
6、)从如图所示的长方形区域内任取一个点M(x,y),则点M取自阴影部分的概率为 ;【命题立意】本题考查积分、几何概率的简单运算,属送分题。【思路点拨】由积分求出阴影部分的面积即可【规范解答】阴影部分的面积为所以点M取自阴影部分的概率为答案:9(2010 海南高考理科T13)设y=f(x)为区间0,1上的连续函数,且恒有0f(x) 1,可以用随机模拟方法近似计算积分,先产生两组(每组N个)区间0,1上的均匀随机数,和,由此得到N个点(i=1,2,N),在数出其中满足(i=1,2,N)的点数,那么由随机模拟方法可得积分的近似值为 .【命题立意】本题主要考查了定积分的几何意义以及几何概型的计算公式.【
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 导数 及其 应用 考题 精选 13
限制150内