2018年高考数学总复习第十章计数原理概率第2讲排列与组合学案(共7页).doc
《2018年高考数学总复习第十章计数原理概率第2讲排列与组合学案(共7页).doc》由会员分享,可在线阅读,更多相关《2018年高考数学总复习第十章计数原理概率第2讲排列与组合学案(共7页).doc(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上第2讲排列与组合最新考纲1.理解排列、组合的概念;2.能利用计数原理推导排列数公式、组合数公式;3.能解决简单的实际问题.知 识 梳 理1.排列与组合的概念名称定义排列从n个不同元素中取出m(mn)个不同元素按照一定的顺序排成一列组合合成一组2.排列数与组合数(1)从n个不同元素中取出m(mn)个元素的所有不同排列的个数,叫做从n个不同元素中取出m个元素的排列数.(2)从n个不同元素中取出m(mn)个元素的所有不同组合的个数,叫做从n个不同元素中取出m个元素的组合数.3.排列数、组合数的公式及性质公式(1)An(n1)(n2)(nm1)(2)C(n,mN*,且mn).
2、特别地C1性质(1)0!1;An!(2)CC;CCC诊 断 自 测1.判断正误(在括号内打“”或“”)(1)所有元素完全相同的两个排列为相同排列.()(2)两个组合相同的充要条件是其中的元素完全相同.()(3)若组合式CC,则xm成立.()(4)kCnC.()解析元素相同但顺序不同的排列是不同的排列,故(1)不正确;若CC,则xm或nm,故(3)不正确.答案(1)(2)(3)(4)2.从4本不同的课外读物中,买3本送给3名同学,每人各1本,则不同的送法种数是()A.12 B.24 C.64 D.81解析4本不同的课外读物选3本分给3位同学,每人一本,则不同的分配方法为A24.答案B3.(选修2
3、3P28A17改编)从4名男同学和3名女同学中选出3名参加某项活动,则男女生都有的选法种数是()A.18 B.24 C.30 D.36解析法一选出的3人中有2名男同学1名女同学的方法有CC18种,选出的3人中有1名男同学2名女同学的方法有CC12种,故3名学生中男女生都有的选法有CCCC30种.法二从7名同学中任选3名的方法数,再除去所选3名同学全是男生或全是女生的方法数,即CCC30.答案C4.(2017浙江三市十二校联考)用1,2,3,4,5,6这六个数字组成没有重复数字的六位数共有_个;其中1,3,5三个数字互不相邻的六位数有_个.解析用1,2,3,4,5,6组成没有重复数字六位数共有A
4、720个;将1,3,5三个数字插入到2,4,6三个数字排列后所形成的4个空中的3个,故有AA144个.答案7201445.用数字1,2,3,4,5组成的无重复数字的四位偶数的个数为_(用数字作答).解析末位数字排法有A,其他位置排法有A种,共有AA48种.答案486.(2017绍兴调研)某市委从组织机关10名科员中选3人担任驻村第一书记,则甲、乙至少有1人入选,而丙没有入选的不同选法的种数为_(用数字作答).解析法一(直接法)甲、乙两人均入选,有CC种.甲、乙两人只有1人入选,有CC种方法,由分类加法计数原理,共有CCCC49(种)选法.法二(间接法)从9人中选3人有C种方法.其中甲、乙均不入
5、选有C种方法,满足条件的选排方法是CC843549(种).答案49考点一排列问题【例1】 (2017河南校级月考)3名女生和5名男生排成一排.(1)如果女生全排在一起,有多少种不同排法?(2)如果女生都不相邻,有多少种排法?(3)如果女生不站两端,有多少种排法?(4)其中甲必须排在乙前面(可不邻),有多少种排法?(5)其中甲不站最左边,乙不站最右边,有多少种排法?解(1)(捆绑法)由于女生排在一起,可把她们看成一个整体,这样同五个男生合在一起有6个元素,排成一排有A种排法,而其中每一种排法中,三个女生间又有A种排法,因此共有AA4 320(种)不同排法.(2)(插空法)先排5个男生,有A种排法
6、,这5个男生之间和两端有6个位置,从中选取3个位置排女生,有A种排法,因此共有AA14 400(种)不同排法.(3)法一(位置分析法)因为两端不排女生,只能从5个男生中选2人,有A种排法,剩余的位置没有特殊要求,有A种排法,因此共有AA14 400(种)不同排法.法二(元素分析法)从中间6个位置选3个安排女生,有A种排法,其余位置无限制,有A种排法,因此共有AA14 400(种)不同排法.(4)8名学生的所有排列共A种,其中甲在乙前面与乙在甲前面的各占其中,符合要求的排法种数为A20 160(种).(5)甲、乙为特殊元素,左、右两边为特殊位置.法一(特殊元素法)甲在最右边时,其他的可全排,有A
7、种;甲不在最右边时,可从余下6个位置中任选一个,有A种;而乙可排在除去最右边位置后剩余的6个中的任一个上,有A种;其余人6个人进行全排列,有A种.共有AAA种.由分类加法计数原理,共有AAAA30 960(种).法二(特殊位置法)先排最左边,除去甲外,有A种,余下7个位置全排,有A种,但应剔除乙在最右边时的排法AA种,因此共有AAAA30 960(种).法三(间接法)8个人全排,共A种,其中,不合条件的有甲在最左边时,有A种,乙在最右边时,有A种,其中都包含了甲在最左边,同时乙在最右边的情形,有A种.因此共有A2AA30 960(种).规律方法(1)对于有限制条件的排列问题,分析问题时有位置分
8、析法、元素分析法,在实际进行排列时一般采用特殊元素优先原则,即先安排有限制条件的元素或有限制条件的位置,对于分类过多的问题可以采用间接法.(2)对相邻问题采用捆绑法、不相邻问题采用插空法、定序问题采用倍缩法是解决有限制条件的排列问题的常用方法.【训练1】 (1)(2017新余二模)7人站成两排队列,前排3人,后排4人,现将甲、乙、丙三人加入队列,前排加一人,后排加两人,其他人保持相对位置不变,则不同的加入方法种数为()A.120 B.240 C.360 D.480(2)(2017抚顺模拟)某班准备从甲、乙等七人中选派四人发言,要求甲乙两人至少有一人参加,那么不同的发言顺序有()A.30 B.6
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2018 年高 数学 复习 第十 计数 原理 概率 排列 组合
限制150内