高中数学概率-重点问题探讨.doc
《高中数学概率-重点问题探讨.doc》由会员分享,可在线阅读,更多相关《高中数学概率-重点问题探讨.doc(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上高中数学中古典概率应用上之易错处探究一、基本概念(1)分类计数原理:(2)分步计算原理:(3)排列:一般地,从个元素中取出个元素(),按照一定的顺序排成一列, 叫做从个元素中取出个元素的一个排列。从个元素中取出个元素()的所有排列的个数,叫做从个不同元素中取出个元素的排列数,用符号表示,。(4)组合:一般地,从个不同元素中取出个元素()并成一组,叫做从个元素中取出个元素的一个组合。从个元素中取出个元素的所有组合的个数,叫做从个不同元素中取出个元素的组合数,用符号表示。 (5)必然事件:在一定的条件下必然要发生的事件。(6)不可能事件:在一定的条件下不可能发生的事件。(
2、7)随机事件:在一定的条件下可能发生也可能不发生的事件。(8)在相同的条件下,进行了次试验,在这次试验中,事件发生的次数称为事件发生的。比值称为事件发生的频率。(9)一般地,在大量重复进行同一实验时,事件发生的频率总是接近于某个常数,在它附近摆动,这时就把这个常数叫做事件的频率,记作,且一次实验连同其中可能出现的每一个结果称为一个基本事件,通常此试验中的某一个事件由几个基本事件组成,如果一次实验中可能出现的结果有个,即此实验由个基本事件组成。而且所有结果出现的可能性相等,那么每一个基本事件的概率都是。如果某个事件包含的结果有个,那么事件的概率 。 二、重点问题剖析1.“有放回摸球”与“无放回摸
3、球”“有放回摸球”与“无放回摸球”主要有以下区别:(1)无放回摸球主要是指每次摸出的球放在袋外,下次再摸球时总数比前次少一;而有放回的摸球是每次摸出一球放在袋内,下次再摸球时袋内球的总数不变。(2)“无放回摸球”各次抽取不是相互独立的,而“有放回摸球”每次是相互独立的。下面通过一个例题来进一步的说明“无放回摸球”与“有放回摸球”的区别。例1 袋中有1,2,3,号球各一个,采用无放回,有放回的两种方式摸球,试求在第次摸球时首先摸到一号球的概率。解:设为事件“第i次摸到一号球” 。无放回摸球若把次摸出的个球排成一排,则从个球任取个球的每个排列就是一个基本事件,因此基本事件的总数为以数码1,2,中任
4、取个数码的排列数,。下面求事件包含的基本事件数,事件可分两步完成:先在第个位置上排上1号球,只有一种排法,再在前个位置排其它个球,共有种排法,由乘法原理知,事件包含的基本事件数为,从而 。有放回的摸球因为有放回摸球,每次袋中都有个球,共摸次,故共有种可能结果,既基本事件总数为。事件可分为两步完成:前次未摸到1号球,共有,于是。分析:对于有放回摸球与无放回摸球题型,在审题时一定要注意是有放回还是无放回,然后根据题意来考虑排列与组合的应用,总之,一定要抓住题目的隐含条件与已知条件的关系,所要求的问题与已知条件之间的连接点,这样才能够很快的解决问题而不至于错误。2.“隔板法”隔板法是插空法的一种特殊
5、情况,它的使用非常广泛,能解决一大类组合问题。下面用一个具体的例子来说明它的使用的优越性。例2 将9个相同的小球放到六个不同的盒子里,每个盒子至少放一个球,有多少种不同放法。解法一:先在盒子里各放一个球,再把剩下的3个球放到6个盒子里,分三类: 3个球放到一个盒子里,有种放法; 3个球放到两个盒子里,球数分别为2,1,共种放法; 3个球放到3个盒子里,每个盒子各一个球,共种放法。根据分类计数原理,共有种放法。解法二(隔板法):把 6个盒子看做由平行的7个隔板组成的,每一个满足要求的放法、相当于9个小球和7个隔板的一个排列,其中2个隔板在两头,任何2个隔板之间至少有1个球(既任何2个隔板不相邻)
6、,把两头的2个隔板拿掉,每一个满足要求的放法还相当于再排成一列的9个小球间8个空档中插入5个隔板,不同的放球方法即插隔板的方法,共有种。分析:对于用隔板法解决概率问题,一般都是将问题的思考角度进行转化,使问题从多向思维向单一思维转化,然后把问题的本质找出来进行剖析,问题自然就很好理解了。上述解法2应用了对应的方法,转化为插空问题,计算比较简单,但不易理解,等理解透彻后,就会发现隔板法是非常好用的,是具有普适性的方法。但一定要注意的是应用此法的前提是小球是完全相同(不加区分),盒子是不同的,每个盒子至少放一球。例3 要从高一年级8个班中产生12学生代表,每个班至少产生一名代表,则代表名额的分配的
7、方案至少有多少种?解:这个问题如果用原始的方法来分析,是比较麻烦的额,但如果转化问题的角度,用“隔板法”来理解,这个问题就容易解决了。把12个名额看做12个相同小球,8个班看做8个不同的盒子,用隔板法知道名额分配方法共有种。 3. 分组问题分组问题时排列组合中的一个难点,主要有以下两种情况。(1)非平均分组问题在非平均分组问题中,不管是给出组名或不给出组名,其分组的方法相同。例4 把12人分成如下三组,分别求出以下各种分组的方法数:分成甲、乙、丙三组,其中甲组7人、乙组3人、丙组2人。分成三组,其中一组7人、一组3人、一组2人。解:先从12人中任选7人为甲组,余下5人中任选3人为乙组,剩下2人
8、为丙组,则共有种不同的方法。先从12人中任选7人为一组有种选法,再从余下5人中任选3人有种选法,剩下的两人为一组,共有种不同的选法。分析:在第一个问题中,学生很容易受到干扰,就是对于甲、乙、丙三组,和分成三组时否需要乘以的问题。但是由于各组的人数不同,这个问题属于非平均分组问题,虽然第一小问给出了分组的名称,但是这个并不影响最后的结果,它们的分组方法都是一样的。(2)平均分分组问题。分析:上面的非平均分组问题中,是否给出组名对结果没有影响,但在平均分组问题中一定要注意问题是否给出了具体的组名,它们的结果是不同的。 例5 有6本不同的书,按下列要求分配,各有多少种分发。分给甲、乙、丙三人,每人2
9、本;平均分成三份。解:从6本书中任取2本给一个人,再从剩下的4本中取2本给另外一个人,剩下的2本给最后一个人,共有种分法。设平均分成三堆有x种分法,在分给甲乙、丙三人每人各2本,则应有种分法。所以有 种不同的分法。说明:上面例子中可以看出:两个问题都是分成三堆,每堆两本,属于平均分组问题,而(1)分到甲、乙、丙三人,属于到位问题,相当于给出了甲、乙、丙三个指定的组,但(2)没有给出组名,因而是不同的。规律:一般地,把个元素平均分到个不同的位置,有种方法,把个不同元素平均分成组有种分法。4. 圆排列与重复组合问题(1)圆排列 定义1:从个不同的元素中任取个,按照一定的顺序排成圆形,叫做一个圆排列
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 概率 重点 问题 探讨
限制150内