《一次函数讲义适用于新课复习非常全面2017.doc》由会员分享,可在线阅读,更多相关《一次函数讲义适用于新课复习非常全面2017.doc(30页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上一次函数讲义-适用于新课复习非常全面内容提示:1.变量及函数课堂学习检测课后综合训练2.函数的图像课堂学习检测课后综合训练3.正比咧函数课堂学习检测课后综合训练4.一次函数课堂学习检测课后综合训练5.一次函数与一次方程(组)及一元一次不等式课堂学习检测课后综合训练6.一次函数综合过关变量及函数一次函数一元一次方程一元一次不等式二元一次方程再认识变化的世界函数建立数学模型图象性质应用知识点:一次函数知识网络图1、变量:在一个变化过程中可以取不同数值的量。 常量:在一个变化过程中只能取同一数值的量。2、函数:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一
2、个确定的值,y都有唯一确定的值与其对应,那么我们就把x称为自变量,把y称为是x的函数。判断A是否为B的函数,只要看B取值确定的时候,A是否有唯一确定的值与之对应3、自变量取值范围:一般的,一个函数的自变量允许取值的范围。4、函数值:对于自变量x与函数y,在自变量x取值范围内,当x=a时,y=b,则称b为当x=a时的函数值。5、确定函数自变量取值范围的方法: (1)必须使关系式成立。当关系式为整式时,自变量取值范围为全体实数;当关系式含有分式时,自变量取值范围要使分式的分母的值不等于零;关系式含有二次根式时,自变量取值范围必须使被开方的式子不小于零;当关系式中含有指数为零或负数的式子时,自变量取
3、值范围要使底数不等于零; (2)当函数关系表示实际问题时,自变量的取值范围还要符合实际情况,使之有意义。 (3)当函数关系表示一个图形的变化关系时,自变量的取值范围必须使图形存在。课堂学习检测一、填空题1设在某个变化过程中有两个变量x和y,如果对于变量x取值范围内的_,另一个变量y都有_的值与它对应,那么就说_是自变量,_是的函数2设y是x的函数,如果当xa时,yb,那么b叫做当自变量的值为_时的_3对于一个函数,在确定自变量的取值范围时,不仅要考虑_有意义,而且还要注意问题的_4飞轮每分钟转60转,用解析式表示转数n和时间t(分)之间的函数关系式:(1)以时间t为自变量的函数关系式是_(2)
4、以转数n为自变量的函数关系式是_5某商店进一批货,每件5元,售出时,每件加利润0.8元,如售出x件,应收货款y元,那么y与x的函数关系式是_,自变量x的取值范围是_6已知5x2y70,用含x的代数式表示y为_;用含y的代数式表示x为_7已知函数y2x21,当x13时,相对应的函数值y1_;当时,相对应的函数值y2_;当x3m时,相对应的函数值y3_反过来,当y7时,自变量x_8已知根据表中 自变量x的值,写出相对应的函数值x432101234y二、求出下列函数中自变量x的取值范围91011121314151617课后综合训练一、选择题18在下列等式中,y是x的函数的有( )3x2y0,x2y2
5、1,A1个B2个C3个D4个19设一个长方体的高为10cm,底面的宽为xcm,长是宽的2倍,这个长方体的体积V(cm3)与长、宽的关系式为V20x2,在这个式子里,自变量是( )A20x2B20xCVDx20电话每台月租费28元,市区内电话(三分钟以内)每次0.20元,若某台电话每次通话均不超过3分钟,则每月应缴费y(元)与市内电话通话次数x之间的函数关系式是( )Ay28x0.20By0.20x28xCy0.20x28Dy280.20x二、解答题21已知:等腰三角形的周长为50cm,若设底边长为xcm,腰长为ycm,求y与x的函数解析式及自变量x的取值范围22某人购进一批苹果到集市上零售,已
6、知卖出的苹果x(千克)与销售的金额y元的关系如下表:x(千克)12345y(元)2+0.14+0.26+0.38+0.410+0.5(1)写出y与x的函数关系式:_;(2)该商贩要想使销售的金额达到250元,至少需要卖出多少千克的苹果?拓展、探究、思考23用40m长的绳子围成矩形ABCD,设ABxm,矩形ABCD的面积为Sm2,(1)求S与x的函数解析式及x的取值范围;(2)写出下面表中与x相对应的S的值:x899.51010.51112S(3)猜一猜,当x为何值时,S的值最大?(4)想一想,如果打算用这根绳子围成的面积比(3)中的还大,应围成么样的图形?并算出相应的面积函数的图象知识点:函数
7、的图像一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象函数解析式:用含有表示自变量的字母的代数式表示函数的式子叫做解析式。函数解析式通常写成一个等式,表示函数的变量写在“=”的左边,含自变量的代数式写在“=”的右边。含有某一表达自变量字母的式子就是关于这个自变量的函数。描点法画函数图形的一般步骤第一步:列表(表中随机取出一些自变量的值及其对应的函数值,取值时,通常取57组);第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);第三步:连线(按照横坐标由小到大的顺序
8、把所描出的各点用平滑曲线连接起来,并表示出图象的趋势)。函数的表示方法(1)列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。(2)解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。(3)图象法:形象直观,但只能近似地表达两个变量之间的函数关系。函数的三种表示方法各有优、缺点,有时可以相互转化。课堂学习检测一、解答题1回答问题(1)什么是函数的图象?(2)为什么要学习函数的图象?(3)用“描点法”画一个函数的图象的一般步骤是什么?2用“描点法”分别画出下列各函数的图象(1)x642
9、024y解:函数的自变量x的取值范围是_(2)解:函数的自变量x的取值范围是_x642024y问题:当(2)中的自变量x的取值范围变为2x4时,请在上图中标出相应的图象部分(3)yx2解:函数yx2的自变量x的取值范围是_x101y从图象可以得到,函数图象的最低点的坐标是_;此图象关于_对称3如图21,下面的图象记录了某地一月份某大的温度随时间变化的情况,请你仔细观察图象回答下面的问题:图21(1)在这个问题中,变量分别是_,时间的取值范围是_;(2)20时的温度是_,温度是0的时刻是_时,最暖和的时刻是_时,温度在3以下的持续时间为_小时;(3)你从图象中还能获得哪些信息?(写出12条即可)
10、答:_课后综合训练一、选择题4图22中,表示y是x的函数图象是()图225如图23是护士统计一位病人的体温变化图,这位病人中午12时的体温约为()图23A39.0B38.2C38.5D37.86如图24,某游客为爬上3千米的山顶看日出,先用1小时爬了2千米,休息0.5小时后,再用1小时爬上山顶,游客爬山所用时间t(小时)与山高h(千米)间的函数关系用图象表示是( )图24二、填空题7星期日晚饭后,小红从家里出去散步,图25所示,描述了她散步过程中离家的距离s(m)与散步所用的时间t(min)之间的函数关系,该图象反映的过程是:小红从家出发,到了一个公共阅报栏,看了一会报后,继续向前走了一段,在
11、邮亭买了一本杂志,然后回家了依据图象回答下列问题图25(1)公共阅报栏离小红家有_米,小红从家走到公共阅报栏用了_分;(2)小红在公共阅报栏看新闻一共用了_分;(3)邮亭离公共阅报栏有_米,小红从公共阅报栏到邮亭用了_分;(4)小红从邮亭走回家用了_分,平均速度是_米秒三、解答题8已知:线段AB36米,一机器人从A点出发,沿线段AB走向B点(1)求所走的时间t(秒)与其速度V(米秒)的函数解析式及自变量V的取值范围;(2)利用描点法画出此函数的图象拓展、探究、思考9大家知道,函数图象特征与函数性质之间存在着必然联系请根据图26中的函数图象特征及表中的提示,说出此函数的变化规律此外,你还能说出此
12、函数的哪些性质?图26序号函数图象特征函数变化规律(1)曲线从点A(6,4)至点K(7,2)自变量的取值范围是_(2)曲线与y轴交于点D(0,4)当x=_时,y=_(3)曲线与x轴分别交于点B(5,0)、F(2,0)、H(6,0)当x的值分别为时_,y=0(4)曲线经过点E(1,2)当x=_时,y=_(5)由左至右曲线AC呈上升状态当6x2时,y随x的增大而_(6)由左至右曲线CG呈下降状态当_时,y随x的增大而_(7)由左至右曲线GK呈_当_时y随_(8)曲线上的最高点是C(2,5)当x=_时,y有_值,且这个值为_(9)曲线上的最低点是_当x=_时,y有_值,且这个值为_(10)曲线BCF
13、位于x轴的上方当_时,y_0正比例函数知识点:正比例函数一般地,形如y=kx(k是常数,k0)的函数叫做正比例函数,其中k叫做比例系数.注:正比例函数一般形式 y=kx k0 x的指数为1 当k0时,直线y=kx经过三、一象限,从左向右上升,即随x的增大y也增大;当k0时,直线y=kx经过 象限,当k0时,图像从左向右_,即随x的增大y也 ;当k0时,图像经过一、三象限;k0,y随x的增大而增大;k0时,向上平移;当b0,图象经过第一、三象限;k0,图象经过第一、二象限;b0,y随x的增大而增大;k0时,将直线y=kx的图象向上平移b个单位;当b0时,向上平移;当b0或ax+by2 (B)y1=y2 (C)y1a,将一次函数y=bx+a与y=ax+b的图象画在同一平面直角坐标系内,则有一组a,b的取值,使得下列4个图中的一个为正确的是( ) 6若直线y=kx+b经过一、二、四象限,则直线y=bx+k不经过第( )象限 (A)一 (B)二 (C)三 (D)四 7一次函数y=kx+2经过点(1,1),那么这个一次函数( ) (A)y随x的增大而增大 (B)y随x的增大而减小 (C)图像经过原点 (D)图像不经过第二象限 8无论
限制150内