培优专题:二次根式(共5页).doc
《培优专题:二次根式(共5页).doc》由会员分享,可在线阅读,更多相关《培优专题:二次根式(共5页).doc(5页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上数学培优专题讲义:二次根式一、 知识的拓广延伸1、 挖掘二次根式中的隐含条件一般地,我们把形如 的式子叫做二次根式,其中。根据二次根式的定义,我们知道:被开方数a的取值范围是 ,由此我们判断下列式子有意义的条件:2、 的化简教科书中给出:一般地,根据算术平方根的意义可知:,在此我们可将其拓展为: (1)、根据二次根式的这个性质进行化简:数轴上表示数a的点在原点的左边,化简=化简求值:;其中a=已知,化简;若为a,b,c三角形的三边,则;计算:.(2) 、根据二次根式的定义和性质求字母的值或取值范围。若,求m的取值范围。若,则x的取值范围是若,求的值;3、 如何把根号外
2、的式子移入根号内我们在化简某些二次根式时,有时会用到将根号外的式子移入根号内的知识,这样式子的化简更为简单。在此我们要特别注意先根据二次根式的意义来判断根号外的式子的符号。如果根号外的式子为非负值,可将其平方后移入根号内,与原被开方数相乘作为新的被开方数,根号前的符号不会发生改变;如果根号外的式子为负值,那么要先将根号前的符号变号,再将其其平方后移入根号内,与原被开方数相乘作为新的被开方数。(1)、 根据上述法则,我们试着将下列各式根号外的式子移入根号内:, (2)、利用此方法可比较两个无理数的大小。 4、 海伦秦九韶公式根据该公式,可以在不求三角形的高的情况下,利用三角形的三边长度来求三角形
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 专题 二次 根式
限制150内