2016年专项练习题集-简单复合函数的导数(共7页).docx
《2016年专项练习题集-简单复合函数的导数(共7页).docx》由会员分享,可在线阅读,更多相关《2016年专项练习题集-简单复合函数的导数(共7页).docx(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上 2016年专项练习题集-简单复合函数的导数一、选择题1.函数ycos3xsin的导数为() A3sin 3x B3sin 3x C3sin3x D3sin 3x【分值】5分【答案】A【易错点】解答此类问题常犯两个错误:(1)不能正确区分所给函数是否为复合函数(2)若是复合函数,不能正确判断它是由哪些基本初等函数复合而成【考查方向】本题主要考查了复合函数的导数以及导数的加法法则。【解题思路】先分析函数是怎样复合而成的,找出中间变量,分层求导。【解析】ysin 3x(3x)cos ()3sin3xcos3sin 3x.2.函数y2xln(2x1)的导数为() Aln(2
2、x1) B2ln(2x1) C2xln(2x1) D.【分值】5分【答案】B【易错点】忽略对复合函数的内层函数求导致误【考查方向】本题主要考查了复合函数的导数以及导数的乘法法则。【解题思路】按照导数的乘法法则展开,然后再对展开式中的复合函数求导。【解析】y2xln(2x1)(2x)ln(2x1)2xln(2x1)2ln(2x1)2x(2x1)2ln(2x1).3.函数ycos 2x-sin 2x的导数是()A-2 cosBcos 2xsin 2xCsin 2xcos 2xD-2cos【分值】5分【答案】A【易错点】忽略对复合函数的内层函数求导致误【考查方向】本题主要考查了复合函数的导数以及导数
3、的减法法则。【解题思路】按照导数的减法法则展开,然后再对展开式中的复合函数求导。【解析】y(cos2xsin2x)(cos2x)(sin2x)-sin2x(2x)-cos2x(2x)-2sin2x-2 cos 2x-2-2cos,故选A.4.若函数为f(x)cos4xsin4x,则f()( )A.2 B. -2 C.1 D.-1【分值】5分【答案】B【考查方向】本题主要考查了复合函数的导数。【易错点】不能对函数关系式准确化简致误【解题思路】先应用三角公式化简,再对复合函数求导。【解析】f(x)cos4xsin4x(sin2xcos2x)(cos2xsin2x)cos 2x,f(x)(cos 2
4、x)(sin 2x)(2x)-2 sin 2x,f()=-2.5.曲线ye3x-2在点(0,-1)处的切线方程为( )A.3x-y-10 B.3xy-10 C.3xy+10 D.3x-y+10【分值】5分【答案】C【易错点】若一个函数是复合函数,求导时要先明确函数的构成,分清哪个是里层函数哪个是外层函数,做到层次分明,心中有数【考查方向】本题主要考查了复合函数的导数、导数的几何意义。【解题思路】先找出内层函数求导,然后再对外层函数求导。【解析】因为ye3x(3x)3e3x,所以y|x03,故切线方程为y+13(x0),即3xy+10.二、填空题6.已知函数f(x),则f(1)+f(1)= .【
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2016 专项 习题集 简单 复合 函数 导数
限制150内