(三)偏微分方程的数值离散方法.ppt
《(三)偏微分方程的数值离散方法.ppt》由会员分享,可在线阅读,更多相关《(三)偏微分方程的数值离散方法.ppt(55页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、1(三)偏微分方程的数值离散方法(三)偏微分方程的数值离散方法 3.1 有限差分法 3.2 有限体积法 (有限元,谱方法,谱元,无网格,有限解析,边界元,特征线) 23.1 有限差分法 3.1.1 模型方程的差分逼近 3.1.2 差分格式的构造 3.1.3 差分方程的修正方程 3.1.4 差分方法的理论基础 3.1.5 守恒型差分格式 3.1.6 偏微分方程的全离散方法33.1.1 模型方程的差分逼近43.1.2 差分格式的构造53.1.3 差分方程的修正方程差分方程所精确逼近的微分方程称为修正方程 对于时间发展方程,利用展开的方程逐步消去带时间的高阶导数,只留空间导数。Warming-Hye
2、tt方法:差分方程(2)写成算子的形式: (3) 24121616121 )2() 1() 1(! 31! 21) 1(! 31! 21Taylor(2) 22121(1) 04422233233222133322213332221112111xuxutcxuxxuctuttuttuueuuexuxxuxxuxuuuetuttuttutuuuuuuuuuxuctuxxjxxjjttnjnjjjjjjnjnj等价于:展开63.1.3 差分方程的修正方程 (续) 12220121212112332114444444333344433322223332222(5) 22121183,31,21, 1
3、,1) 1() 1( 211) 1( 21216122121) 1( ! 31! 21) 1( (4)u 221)(21) 1(ppppppppkkkkllxxxxxxxxllttlllttllttttttttttxxxxxxxxttxuxuxutueeeebebttbbbbebttetttutetuttutetuttuttutetuttuttuteeeueeue即有最后得到的级数表示成可以将则记算子73.1.3 差分方程的修正方程(续) ? (2) schemefor 1CFL why . min)3(81)(61, 020) 1( : , 0) 1() 1() 1(222242223212
4、21212012212)(122201212121稳定性判别条件符合,):对于(满足偶次项系数件是格式稳定的充分必要条基本解为HyettgWarxtctcxtccckkkkeexuxuxutuppppppppppppppikxtippppppppkkkk83.1.4 差分方法的理论基础 相容性,稳定性,收敛性 等价性定理 Fourier稳定性分析93.1.4 差分方法的理论基础(续) Fourier (Von Neumann) 稳定性分析(1) 0 , 0)(111cuuxctuunininini1Gfactor ion amplificat )()(: ) 1 ( 111111111nnik
5、xnikxnikxnikxnninininikxnniikxnniikxnniAAGeAeAeAeAuuuueAueAueAuxtciiiiiii满足稳定性要求的代入误差的基本解设103.1.4 差分方法的理论基础(续) Fourier (Von Neumann) 稳定性分(续) 称为CFL条件 (Courant, Friedrichs, Levy)1 1 1,2sin)1 (41sin)cos1 (1sin)cos1 (1)sin(cos1122222 ifGxkxkxkGxkixkxkixkeGxik113.1.5 守恒型差分格式流体力学方程组描述物理量的守恒性;守恒律组:定义01diix
6、tfu)(),(:f),(2f 0)(, 212121212111ufuuufuuufflffxtuuxuftunljnljnljnjnjnjnjnjnj满足相容性条件个变量的多变量函数:称为数值通量,它是其中则为守恒型差分格式。下形式其差分格式如果具有如对于一维单个守恒律:123.1.5 守恒型差分格式(续)守恒性质:非守恒的差分格式一般没有对应于原始守恒律的“离散守恒律”。0),(),(),(),()0 ,(),(:2/12/1112/12/102102110210210121211dttxufdxtxudttxudttxudxxudxtxutftfxuxuntftfxuxujJJnnJJ
7、xxtJtJxxnNkkJNkkJJjJjjJjJjnjnJnJJjJjnjJjJjnj守恒律:律。完全对应于连续的该积分代表离散的守恒可以看成是积分求和再对求和守恒型差分格式对133.1.5 守恒型差分格式(续)守恒型差分格式的Lax-Wendroff定理: 如果守恒型差分格式是和守恒律相容的,且当时间和空间步长趋于零时,差分解一致有界,几乎处处收敛于分片连续可微的函数,则这个收敛的函数就是守恒律的一个弱解。推论:守恒型差分各式的收敛解能自动满足间断关系。 用途: (加上熵条件)可以得到正确的激波,研究中大量使用例如:Lax-Friedrichs 格式,Lax-Wendroff格式,Mac
8、Cormack格式 0)(xuftunjnjnjnjffxtuu212111143.1.6 偏微分方程的全离散方法 对差分格式的一般要求: 有精度、格式稳定、求解效率高 特殊要求 物理定律(守恒性)、物理特征(激波、湍流、旋涡、多介质、化学反应等)、有界性(正密度、正温度、正湍动能、正组分浓度等) 主要指非定常方程的时间离散 153.1.6偏微分方程的全离散方法(续) 两层格式 Crank-Nicolson格式、P-C格式、Lax-Wendroff格式、MacCormack 格式 Runge-Kutta方法 时空全守恒:如Godunov格式、central-upwind格式、CESE方法 多层
9、格式 Leap-Frog格式、Adams-Bashforth格式、后三点隐格式 163.1.6.1 两层格式 Crank-Nicolson格式 Predictor-Corrector格式 Lax-Wendroff 格式 Mac Cormack格式 Runge-Kutta方法stable nalunconditio)(4440)(40)(2011111111111111111nnninininininininininininininnniniBAuBuuuuuuuuuuxctuuxuxuctuuxuctu173.1.6.1 两层格式(cont.) Lax-Wendroff 格式一步LW格式xtc
10、xtOuuuuuuuxuctuninininininini其中),( ),2(2)(202211211111) 1(cossin1)2(2)(21:2121GxkxkiAAGeeeeAAFouriernnxikxikxikxiknn稳定性183.1.6.1 两层格式(cont.) Lax-Wendroff 格式两步LW格式常系数Jacobian时与单步LW等价。但计算更简单,不涉及矩阵相乘。1 ),( , 0)(10)(12/2/ )(022212121211112121xtOffxtuuffxtuuuxftuninininininininini193.1.6.1 两层格式(cont.) Ma
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 微分方程 数值 离散 方法
限制150内