二次函数专题训练(正方形的存在性问题)含答案(共14页).doc
《二次函数专题训练(正方形的存在性问题)含答案(共14页).doc》由会员分享,可在线阅读,更多相关《二次函数专题训练(正方形的存在性问题)含答案(共14页).doc(14页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上1如图,已知抛物线y=x2+bx+c的图象经过点A(l,0),B(3,0),与y轴交于点C,抛物线的顶点为D,对称轴与x轴相交于点E,连接BD(1)求抛物线的解析式(2)若点P在直线BD上,当PE=PC时,求点P的坐标(3)在(2)的条件下,作PFx轴于F,点M为x轴上一动点,N为直线PF上一动点,G为抛物线上一动点,当以点F,N,G,M四点为顶点的四边形为正方形时,求点M的坐标2如图,抛物线y=x2+bx+c与x轴交于点A和点B,与y轴交于点C,点B坐标为(6,0),点C坐标为(0,6),点D是抛物线的顶点,过点D作x轴的垂线,垂足为E,连接BD(1)求抛物线的解析
2、式及点D的坐标;(2)点F是抛物线上的动点,当FBA=BDE时,求点F的坐标;(3)若点M是抛物线上的动点,过点M作MNx轴与抛物线交于点N,点P在x轴上,点Q在坐标平面内,以线段MN为对角线作正方形MPNQ,请写出点Q的坐标3如图,已知抛物线y=ax2+bx3过点A(1,0),B(3,0),点M、N为抛物线上的动点,过点M作MDy轴,交直线BC于点D,交x轴于点E过点N作NFx轴,垂足为点F(1)求二次函数y=ax2+bx3的表达式;(2)若M点是抛物线上对称轴右侧的点,且四边形MNFE为正方形,求该正方形的面积;(3)若M点是抛物线上对称轴左侧的点,且DMN=90,MD=MN,请直接写出点
3、M的横坐标4.(2015 贵州省毕节地区) 如图,抛物线y=x2+bx+c与x轴交于A(1,0),B(3,0)两点,顶点M关于x轴的对称点是M(1)求抛物线的解析式;(2)若直线AM与此抛物线的另一个交点为C,求CAB的面积;(3)是否存在过A,B两点的抛物线,其顶点P关于x轴的对称点为Q,使得四边形APBQ为正方形?若存在,求出此抛物线的解析式;若不存在,请说明理由5. (2016 辽宁省铁岭市) 如图,抛物线y=x2+bx+c与x轴交于点A,点B,与y轴交于点C,点B坐标为(6,0),点C坐标为(0,6),点D是抛物线的顶点,过点D作x轴的垂线,垂足为E,连接BD(1)求抛物线的解析式及点
4、D的坐标;(2)点F是抛物线上的动点,当FBA=BDE时,求点F的坐标;(3)若点M是抛物线上的动点,过点M作MNx轴与抛物线交于点N,点P在x轴上,点Q在平面内,以线段MN为对角线作正方形MPNQ,请直接写出点Q的坐标6. (2016 广东省茂名市) 如图,抛物线y=x2+bx+c经过A(1,0),B(3,0)两点,且与y轴交于点C,点D是抛物线的顶点,抛物线的对称轴DE交x轴于点E,连接BD(1)求经过A,B,C三点的抛物线的函数表达式;(2)点P是线段BD上一点,当PE=PC时,求点P的坐标;(3)在(2)的条件下,过点P作PFx轴于点F,G为抛物线上一动点,M为x轴上一动点,N为直线P
5、F上一动点,当以F、M、G为顶点的四边形是正方形时,请求出点M的坐标二次函数专题训练(正方形的存在性问题)参考答案1如图,已知抛物线y=x2+bx+c的图象经过点A(l,0),B(3,0),与y轴交于点C,抛物线的顶点为D,对称轴与x轴相交于点E,连接BD(1)求抛物线的解析式(2)若点P在直线BD上,当PE=PC时,求点P的坐标(3)在(2)的条件下,作PFx轴于F,点M为x轴上一动点,N为直线PF上一动点,G为抛物线上一动点,当以点F,N,G,M四点为顶点的四边形为正方形时,求点M的坐标【解答】解:(1)抛物线y=x2+bx+c的图象经过点A(1,0),B(3,0),抛物线的解析式为y=x
6、2+2x3;(2)由(1)知,抛物线的解析式为y=x2+2x3;C(0,3),抛物线的顶点D(1,4),E(1,0),设直线BD的解析式为y=mx+n,直线BD的解析式为y=2x6,设点P(a,2a6),C(0,3),E(1,0),根据勾股定理得,PE2=(a+1)2+(2a6)2,PC2=a2+(2a6+3)2,PC=PE,(a+1)2+(2a6)2=a2+(2a6+3)2,a=2,y=2(2)6=2,P(2,2),(3)如图,作PFx轴于F,F(2,0),设M(d,0),G(d,d2+2d3),N(2,d2+2d3),以点F,N,G,M四点为顶点的四边形为正方形,必有FM=MG,|d+2|
7、=|d2+2d3|,d=或d=,点M的坐标为(,0),(,0),(,0),(,0)2如图,抛物线y=x2+bx+c与x轴交于点A和点B,与y轴交于点C,点B坐标为(6,0),点C坐标为(0,6),点D是抛物线的顶点,过点D作x轴的垂线,垂足为E,连接BD(1)求抛物线的解析式及点D的坐标;(2)点F是抛物线上的动点,当FBA=BDE时,求点F的坐标;(3)若点M是抛物线上的动点,过点M作MNx轴与抛物线交于点N,点P在x轴上,点Q在坐标平面内,以线段MN为对角线作正方形MPNQ,请写出点Q的坐标【解答】解:(1)把B、C两点坐标代入抛物线解析式可得,解得,抛物线解析式为y=x2+2x+6,y=
8、x2+2x+6=(x2)2+8,D(2,8);(2)如图1,过F作FGx轴于点G,设F(x,x2+2x+6),则FG=|x2+2x+6|,FBA=BDE,FGB=BED=90,FBGBDE,=,B(6,0),D(2,8),E(2,0),BE=4,DE=8,OB=6,BG=6x,=,当点F在x轴上方时,有=,解得x=1或x=6(舍去),此时F点的坐标为(1,);当点F在x轴下方时,有=,解得x=3或x=6(舍去),此时F点坐标为(3,);综上可知F点的坐标为(1,)或(3,);(3)如图2,设对角线MN、PQ交于点O,点M、N关于抛物线对称轴对称,且四边形MPNQ为正方形,点P为抛物线对称轴与x
9、轴的交点,点Q在抛物线的对称轴上,设Q(2,2n),则M坐标为(2n,n),点M在抛物线y=x2+2x+6的图象上,n=(2n)2+2(2n)+6,解得n=1+或n=1,满足条件的点Q有两个,其坐标分别为(2,2+2)或(2,22)3如图,已知抛物线y=ax2+bx3过点A(1,0),B(3,0),点M、N为抛物线上的动点,过点M作MDy轴,交直线BC于点D,交x轴于点E过点N作NFx轴,垂足为点F(1)求二次函数y=ax2+bx3的表达式;(2)若M点是抛物线上对称轴右侧的点,且四边形MNFE为正方形,求该正方形的面积;(3)若M点是抛物线上对称轴左侧的点,且DMN=90,MD=MN,请直接
10、写出点M的横坐标【解答】解:(1)把A(1,0),B(3,0)代入y=ax2+bx3,得:,解得,故该抛物线解析式为:y=x22x3;(2)由(1)知,抛物线解析式为:y=x22x3=(x1)24,该抛物线的对称轴是x=1,顶点坐标为(1,4)如图,设点M坐标为(m,m22m3),其中m1,ME=|m2+2m+3|,M、N关于x=1对称,且点M在对称轴右侧,点N的横坐标为2m,MN=2m2,四边形MNFE为正方形,ME=MN,|m2+2m+3|=2m2,分两种情况:当m2+2m+3=2m2时,解得:m1=、m2=(不符合题意,舍去),当m=时,正方形的面积为(22)2=248;当m2+2m+3
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 二次 函数 专题 训练 正方形 存在 问题 答案 14
限制150内