自旋电子学与自旋电子器件简述(共7页).doc
《自旋电子学与自旋电子器件简述(共7页).doc》由会员分享,可在线阅读,更多相关《自旋电子学与自旋电子器件简述(共7页).doc(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上自旋电子学与自旋电子器件简述陈闽江,邱彩玉,孙连峰(国家纳米科学中心 器件研究室 北京 )一、引言2007年10月,瑞典皇家科学院宣布,将该年度诺贝尔物理学奖授予在1988年分别独立发现纳米多层膜中巨磁电阻效应的法国Albert Fert教授和德国Peter Grunberg教授。其随后的应用不啻为革命性的,因为它使得计算机硬盘的容量从几十兆、几百兆,一跃而提高了几百倍,达到几十G乃至上百G。越来越多的人开始了解这个工作及其对我们生活的影响,并意识到这个工作方向的重要意义。1988年在磁性多层膜中发现巨磁电阻效应(Giant Magnetoresistance,GMR
2、),1993年和1994年在钙钛矿锰氧化物中发现庞磁电阻效应(Colossal Magnetoresistance,CMR),特别是1995年在铁磁性隧道结材料中发现了室温高隧穿磁电阻效应(Tunneling Magnetoresistance,TMR)以及后续形成的稀磁半导体等研究热潮,这些具有里程碑意义的人工合成磁性材料的成功制备和深入研究,不仅迅速推动了近20年凝聚态物理新兴学科自旋电子学(spintronics)的形成与快速发展,也极大地促进了与自旋极化电子输运相关的磁电阻材料和新型自旋电子学器件的研制和应用。中国科学院物理研究所朱涛研究员表示:“Albert Fert和Peter G
3、runberg种下了一粒种子,随着20世纪90年代应用的突破,这粒种子长成了一棵小苗自旋电子学,这是一个成长很快、前景广阔的磁学分支。”二、电子自旋与自旋电子学要阐明自旋电子学,就不得不先简述一下电子自旋这一概念。电子自旋不是电子的机械自转,电子自旋及磁矩是电子本身的内禀属性,所以也被称为内禀角动量和内禀磁矩。它们的存在标志电子还有一个新的内禀自由度。所以电子状态的完全描述不但包括空间三个自由度的坐标(r),还必须考虑其自旋状态。更确切地说,要考虑自旋在某给定方向(例如z轴方向)的投影的两个可能取值的波幅,即波函数中还应该包含自旋投影这个变量(习惯上取为),从而记为。与连续变量r不同,只能取两
4、个离散值。接下来,认识电的和磁的相互作用在强度上的差异和不同的特点,可以了解自旋电子学的潜力。电荷周围存在电场,通过静电力和其他电荷发生相互作用,这种相互作用是强的和长程的。在常见的半导体中,两个相距5的元电荷间的相互作用能可达0.2eV,它正比于距离的倒数。1V的电压可使载流子改变1eV的能量。然而距离为5的一对电子自旋之间的磁偶极耦合能却只有约eV量级。与静电相互作用相比,它是短程的。在高达1T的磁通密度下,自旋的能量变化只有eV量级。和静电相互作用相比,磁的相互作用要小几个数量级。就存储应用而言,磁相互作用的短程性和弱的相互作用能意味着低功耗和高存储密度,因为靠得很近的磁量子位仍可以保持
5、相互的独立性。虽然电子自旋有这么多的优点可被利用,但是二次大战之后,世界文明的发展都只和电子学有关系,人们从不关心电子的磁性(电子自旋)。经过多年发展,小到手表,大到宇宙,电子的电性有了充分利用,但是磁性一直沉睡着。直到1988年,巨磁电阻效应的发现,第一次揭示了电子自旋的作用,因而具有重大的科学意义。现在的超大规模集成电路在1平方厘米的面积上可以集成107108个电子元件。而目前公认的器件最小尺度是20纳米,一旦小于这个尺寸,传统的工作原理如欧姆定理等就会失效,量子效应则开始起作用。量子效应是几率性、不可预测的,将导致器件工作不稳定。要想突破这个尺寸限制,就必须利用电子的自旋,把自旋作为信息
6、储存、处理、输运的主体。自旋电子学是基于操纵和控制自旋的电子学。它或将自旋(或磁性)作为信息的载体,通过电流或电压进行操控;或将自旋或磁场作为操控电荷或电流信息的手段。操纵电子自旋是指控制自旋的布局,或操控载流子集合的自旋的相,或对单个电子或少数电子自旋进行相干操控。自旋电子学可同时利用电子的自旋和电荷的性质,以实现电子学的功能或量子计算。自旋电子学的研究对象包括电子的自旋极化、自旋相关散射、自旋弛豫以及与此相关的性质及其应用等。目前,自旋电子学的基础研究和应用开发都为物理学、材料科学和电子工程学等领域提供了广阔的发展天地。按照美国加州大学Awschalom教授的观点,自旋电子学器件可分为三个
7、层次:一是基于铁磁性金属的器件;二是将自旋注入半导体器件;三则是单电子自旋器件。目前进入应用的器件(如GMR自旋阀)还只处于第一层次;对于自旋控制和自旋极化输运的了解处于较为肤浅的阶段;对各种新现象、新效应的理解基本上只是半经典的和维象的。因此,自旋电子学的发展还面临很多更大的挑战,当然,机遇与挑战是并存的。三、基于铁磁金属的自旋电子器件对于普通金属和半导体,自旋向上和自旋向下的电子在数量上是一样的,所以传统的金属电子论往往忽略电子的自旋自由度。但是对于铁磁金属,情况则不同。在铁磁金属中,电子的能带分成两个子带,自旋向上子带和自旋向下子带。这两个子带形状几乎相同,只在能量上有一个位移,这是由于
8、铁磁金属中存在交换作用的结果。正是由于两个子带在能量上的差别,使得两个子带的占据情况并不相同。在费米面处,自旋向上和自旋向下的电子态密度也是不同的。这样在铁磁金属中,参与输运的两种取向的电子在数量上是不等的,所以传导电流也是自旋极化的。同时由于两个子带在费米面处的电子态密度不同,不同自旋取向的电子在铁磁金属中受到的散射也是不同的。因此在系统中,如果存在铁磁金属,两种自旋取向的电子的输运特性也有着显著的差别。基于铁磁金属的自旋电子器件正是利用上述的电子特性设计而成的。巨磁电阻(GMR)效应 早在1857年W.Thomson(开尔文勋爵)就在铁和镍中发现了磁电阻效应,即在磁场作用下,磁性金属内部电
9、子自旋方向发生改变而导致电阻改变的现象。由于磁化方向的导电电阻升高而垂直方向的电阻降低,故称之为各向异性磁电阻(Anisotropic Maganetoresistance,AMR)。磁电阻的相对比值磁致电阻(Magnetoresistance,MR)可表示为:。和分别为有磁场作用下和磁场为零时的电阻。MR值随磁场增大而增大,最后达到饱和。但铁磁金属与合金的饱和磁电阻值很小,只有约1%5%。1988年,Fe/Cr金属多层膜在外磁场中电阻变化率高达50%的巨磁电阻效应(GMR)被发现, 各国科学家开始从理论和实验上对多层膜GMR效应展开了广泛而深入的研究。GMR产生机制取决于非铁磁层两边的铁磁层
10、中电子的磁化(磁矩)方向,用于隔离铁磁层的非铁磁层,只有几个纳米厚,甚至不到一个纳米。当这个隔离层的厚度是一定的数值时,铁磁层的磁矩自发地呈现反平行;而加到材料的外磁场足够大时,铁磁材料磁矩的方向变为相互平行。电子通过与电子平均自由程相当厚度的纳米铁磁薄膜时,自旋磁矩的取向与薄膜磁化方向一致的电子较易通过,自旋磁矩的取向与薄膜磁化方向不一致的电子难以通过。因此,当铁磁层的磁矩相互平行时,载流子与自旋有关的散射最小,材料有最小的电阻。当铁磁层的磁矩为反平行时,与自旋有关的散射最强,材料的电阻最大,从而使磁电阻发生很大变化。自旋阀(Spin-valve,SV) 对于反铁磁耦合的多层膜,需要很高的外
11、磁场才能观察到GMR效应,故并不适用于器件应用。在GMR效应基础上人们设计出了自旋阀,使相邻铁磁层的磁矩不存在(或只存在很小的)交换耦合。自旋阀的核心结构是两边为铁磁层,中间为较厚的非铁磁层构成的GMR多层膜。其中,一边的铁磁层矫顽力大,磁矩固定不变,称为被钉扎层;而另外一层铁磁层的磁矩对小的外加磁场即可响应,为自由层。由于被钉扎层的磁矩与自由层的磁矩之间的夹角发生变化导致GMR的电阻值改变。如此,在较低的外磁场下相邻铁磁层磁矩能够在平行与反平行排列之间变换,从而引起磁电阻的变化。自旋阀结构的出现使得巨磁电阻效应的应用很快变为现实。最常用的“顶部钉扎自旋阀”(top spin-valve)的具
12、体结构如图一所示:盖帽层缓冲层衬底自由层钉扎层中间夹层被钉扎层反铁磁性铁磁性铁磁性非磁性材料GMR多层膜图一 自旋阀(SV)叠层结构示意图其中,缓冲层(buffer layer),可使镀膜有较佳的晶体成长方向,也称之为种子层。自由层(free layer),由易磁化的软磁材料所构成。中间夹层(spacer),为非铁磁性材料,目的为于无外加磁场时,让上下两铁磁层无耦合作用。被钉扎层(pinned layer),被固定磁化方向的铁磁性材料。钉扎层(biasing layer),用于固定“被钉扎层”磁化方向的反铁磁性材料。这种非耦合型自旋阀的优点有:磁电阻变化率对外磁场的响应呈线性关系,频率特性好;
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 自旋 电子学 电子器件 简述
限制150内