初三数学函数综合题型及解题方法讲解(共13页).doc
《初三数学函数综合题型及解题方法讲解(共13页).doc》由会员分享,可在线阅读,更多相关《初三数学函数综合题型及解题方法讲解(共13页).doc(13页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上二次函数综合题型精讲精练题型一:二次函数中的最值问题例1:如图,在平面直角坐标系中,抛物线y=ax2+bx+c经过A(2,4),O(0,0),B(2,0)三点(1)求抛物线y=ax2+bx+c的解析式;(2)若点M是该抛物线对称轴上的一点,求AM+OM的最小值解析:(1)把A(2,4),O(0,0),B(2,0)三点的坐标代入y=ax2+bx+c中,得解这个方程组,得a=,b=1,c=0所以解析式为y=x2+x(2)由y=x2+x=(x1)2+,可得抛物线的对称轴为x=1,并且对称轴垂直平分线段OBOM=BMOM+AM=BM+AM连接AB交直线x=1于M点,则此时OM
2、+AM最小过点A作ANx轴于点N,在RtABN中,AB=4,因此OM+AM最小值为方法提炼:已知一条直线上一动点M和直线同侧两个固定点A、B,求AM+BM最小值的问题,我们只需做出点A关于这条直线的对称点A,将点B与A连接起来交直线与点M,那么AB就是AM+BM的最小值。同理,我们也可以做出点B关于这条直线的对称点B,将点A与B连接起来交直线与点M,那么AB就是AM+BM的最小值。应用的定理是:两点之间线段最短。 A A B B M或者 M A B例2:已知抛物线的函数解析式为,若抛物线经过点,方程的两根为,且。(1)求抛物线的顶点坐标.(2)已知实数,请证明:,并说明为何值时才会有.(3)若
3、抛物线先向上平移4个单位,再向左平移1个单位后得到抛物线,设,是上的两个不同点,且满足:,.请你用含有的表达式表示出的面积,并求出的最小值及取最小值时一次函数的函数解析式。解析:(1)抛物线过(,)点,3aa x2bxx2bx=的两根为x1,x2且且bb x2x(x)抛物线的顶点坐标为(,) (2)x,显然当x时,才有 (3)方法一:由平移知识易得的解析式为:yx2 (m,m),B(n,n)AOB为RtOA+OB=ABmmnn(mn)(mn)化简得:m n AOB=m nAOBAOB的最小值为,此时m,(,)直线OA的一次函数解析式为x方法提炼:已知一元二次方程两个根x1,x2,求|x1-x2
4、|。因为|x1-x2|=例3:如图,已知抛物线经过点A(1,0)、B(3,0)、C(0,3)三点(1)求抛物线的解析式(2)点M是线段BC上的点(不与B,C重合),过M作MNy轴交抛物线于N,若点M的横坐标为m,请用m的代数式表示MN的长(3)在(2)的条件下,连接NB、NC,是否存在m,使BNC的面积最大?若存在,求m的值;若不存在,说明理由解析:(1)设抛物线的解析式为:y=a(x+1)(x3),则:a(0+1)(03)=3,a=1;抛物线的解析式:y=(x+1)(x3)=x2+2x+3(2)设直线BC的解析式为:y=kx+b,则有:,解得;故直线BC的解析式:y=x+3已知点M的横坐标为
5、m,则M(m,m+3)、N(m,m2+2m+3);故MN=m2+2m+3(m+3)=m2+3m(0m3)(3)如图;SBNC=SMNC+SMNB=MN(OD+DB)=MNOB,SBNC=(m2+3m)3=(m)2+(0m3);当m=时,BNC的面积最大,最大值为方法提炼:因为BNC的面积不好直接求,将BNC的面积分解为MNC和MNB的面积和。然后将BNC的面积表示出来,得到一个关于m的二次函数。此题利用的就是二次函数求最值的思想,当二次函数的开口向下时,在顶点处取得最大值;当二次函数的开口向上时,在顶点处取得最小值。题型二:二次函数与三角形的综合问题例4:如图,已知:直线交x轴于点A,交y轴于
6、点B,抛物线y=ax2+bx+c经过A、B、C(1,0)三点.(1)求抛物线的解析式;(2)若点D的坐标为(-1,0),在直线上有一点P,使ABO与ADP相似,求出点P的坐标;(3)在(2)的条件下,在x轴下方的抛物线上,是否存在点E,使ADE的面积等于四边形APCE的面积?如果存在,请求出点E的坐标;如果不存在,请说明理由解:(1):由题意得,A(3,0),B(0,3)抛物线经过A、B、C三点,把A(3,0),B(0,3),C(1,0)三点分别代入得方程组 解得:抛物线的解析式为 (2)由题意可得:ABO为等腰三角形,如图所示,若ABOAP1D,则DP1=AD=4 ,P1若ABOADP2 ,
7、过点P2作P2 Mx轴于M,AD=4, ABO为等腰三角形, ADP2是等腰三角形,由三线合一可得:DM=AM=2= P2M,即点M与点C重合 P2(1,2)(3)如图设点E ,则 当P1(-1,4)时,S四边形AP1CE=SACP1+SACE = 点E在x轴下方 代入得: ,即 =(-4)2-47=-120此方程无解当P2(1,2)时,S四边形AP2CE=S三角形ACP2+S三角形ACE = 点E在x轴下方 代入得:即 ,=(-4)2-45=-40此方程无解综上所述,在x轴下方的抛物线上不存在这样的点E。方法提炼:求一点使两个三角形相似的问题,我们可以先找出可能相似的三角形,一般是有几种情况
8、,需要分类讨论,然后根据两个三角形相似的边长相似比来求点的坐标。要求一个动点使两个图形面积相等,我们一般是设出这个动点的坐标,然后根据两个图形面积相等来求这个动点的坐标。如果图形面积直接求不好求的时候,我们要考虑将图形面积分割成几个容易求解的图形。例5:如图,点A在x轴上,OA=4,将线段OA绕点O顺时针旋转120至OB的位置(1)求点B的坐标;(2)求经过点AO、B的抛物线的解析式;(3)在此抛物线的对称轴上,是否存在点P,使得以点P、O、B为顶点的三角形是等腰三角形?若存在,求点P的坐标;若不存在,说明理由解析:(1)如图,过B点作BCx轴,垂足为C,则BCO=90,AOB=120,BOC
9、=60,又OA=OB=4,OC=OB=4=2,BC=OBsin60=4=2,点B的坐标为(2,2);(2)抛物线过原点O和点AB,可设抛物线解析式为y=ax2+bx,将A(4,0),B(22)代入,得,解得,此抛物线的解析式为y=x2+x(3)存在,如图,抛物线的对称轴是x=2,直线x=2与x轴的交点为D,设点P的坐标为(2,y),若OB=OP,则22+|y|2=42,解得y=2,当y=2时,在RtPOD中,PDO=90,sinPOD=,POD=60,POB=POD+AOB=60+120=180,即P、O、B三点在同一直线上,y=2不符合题意,舍去,点P的坐标为(2,2)若OB=PB,则42+
10、|y+2|2=42,解得y=2,故点P的坐标为(2,2),若OP=BP,则22+|y|2=42+|y+2|2,解得y=2,故点P的坐标为(2,2),综上所述,符合条件的点P只有一个,其坐标为(2,2),方法提炼:求一动点使三角形成为等腰三角形成立的条件,这种题型要用分类讨论的思想。因为要使一个三角形成为等腰三角形,只要三角形的任意两个边相等就可以,所以应该分三种情况来讨论。题型三:二次函数与四边形的综合问题例6:综合与实践:如图,在平面直角坐标系中,抛物线y=x2+2x+3与x轴交于AB两点,与y轴交于点C,点D是该抛物线的顶点(1)求直线AC的解析式及B,D两点的坐标;(2)点P是x轴上一个
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初三 数学 函数 综合 题型 解题 方法 讲解 13
限制150内