《二次函数之距离最小(思维)(共13页).doc》由会员分享,可在线阅读,更多相关《二次函数之距离最小(思维)(共13页).doc(13页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上二次函数之最短路径问题例1.(广东)已知二次函数y=x2-2mx+m2-1(1)当二次函数的图象经过坐标原点O(0,0)时,求二次函数的解析式;(2)如图,当m=2时,该抛物线与y轴交于点C,顶点为D,求C、D两点的坐标;(3)在(2)的条件下,x轴上是否存在一点P,使得PC+PD最短?若P点存在,求出P点的坐标;若P点不存在,请说明理由例2.(甘肃兰州)如图,RtABO的两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,O为坐标原点,A、B两点的坐标分别为(-3,0)、(0,4),抛物线yx2bxc经过点B,且顶点在直线x上(1)求抛物线对应的函数关系式;(2)
2、若把ABO沿x轴向右平移得到DCE,点A、B、O的对应点分别是D、C、E,当四边形ABCD是菱形时,试判断点C和点D是否在该抛物线上,并说明理由;(3)在(2)的条件下,连接BD,已知对称轴上存在一点P使得PBD的周长最小,求出P点的坐标;例3.如图,已知抛物线y=x2+bx+c与一直线相交于A(1,0),C(2,3)两点,与y轴交于点N,其顶点为D (1)抛物线及直线AC的函数关系式; (2)设点M(3,m),求使MN+MD的值最小时m的值; (3)若抛物线的对称轴与直线AC相交于点B,E为直线AC上的任意一点,过点E作EFBD交抛物线于点F,以B,D,E,F为顶点的四边形能否为平行四边形?
3、若能,求点E的坐标;若不能,请说明理由; (4)若P是抛物线上位于直线AC上方的一个动点,求APC的面积的最大值例4.(湖南郴州)已知抛物线y=ax2+bx+c经过A(1,0)、B(2,0)、C(0,2)三点(1)求这条抛物线的解析式;(2)如图一,点P是第一象限内此抛物线上的一个动点,当点P运动到什么位置时,四边形ABPC的面积最大?求出此时点P的坐标;(3)如图二,设线段AC的垂直平分线交x轴于点E,垂足为D,M为抛物线的顶点,那么在直线DE上是否存在一点G,使CMG的周长最小?若存在,请求出点G的坐标;若不存在,请说明理由例5.(辽宁)如图16,在平面直角坐标系中,直线与轴交于点,与轴交
4、于点,抛物线经过三点(1)求过三点抛物线的解析式并求出顶点的坐标;(2)在抛物线上是否存在点,使为直角三角形,若存在,直接写出点坐标;若不存在,请说明理由;(3)试探究在直线上是否存在一点,使得的周长最小,若存在,求出点的坐标;若不存在,请说明理由AOxyBFC图16AOxyBFC图16例6.(山西)综合与实践:如图,在平面直角坐标系中,抛物线y=-x2+2x+3与x轴交于A、B两点,与y轴交于点C,点D是该抛物线的顶点(1)求直线AC的解析式及B、D两点的坐标;(2)点P是x轴上一个动点,过P作直线lAC交抛物线于点Q,试探究:随着P点的运动,在抛物线上是否存在点Q,使以点A、P、Q、C为顶
5、点的四边形是平行四边形?若存在,请直接写出符合条件的点Q的坐标;若不存在,请说明理由(3)请在直线AC上找一点M,使BDM的周长最小,求出M点的坐标例7.如图,在矩形OABC中,已知A、C两点的坐标分别为A(4,0)、C(0,2),D为OA的中点设点P是AOC平分线上的一个动点(不与点O重合)(1)试证明:无论点P运动到何处,PC总与PD相等;(2)当点P运动到与点B的距离最小时,试确定过O、P、D三点的抛物线的解析式;(3)设点E是(2)中所确定抛物线的顶点,当点P运动到何处时,PDE的周长最小?求出此时点P的坐标和PDE的周长;(4)设点N是矩形OABC的对称中心,是否存在点P,使CPN=
6、90?若存在,请直接写出点P的坐标例8.(德州)如图,在平面直角坐标系中,已知点A的坐标是(4,0),并且OA=OC=4OB,动点P在过A,B,C三点的抛物线上(1)求抛物线的解析式;(2)是否存在点P,使得ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由;(3)过动点P作PE垂直于y轴于点E,交直线AC于点D,过点D作x轴的垂线垂足为F,连接EF,当线段EF的长度最短时,求出点P的坐标练习:(烟台)如图,在平面直角坐标系中,抛物线y=ax2+bx+c与M相交于A、B、C、D四点,其中A、B两点的坐标分别为(1,0),(0,2),点D在x轴上且AD为
7、M的直径点E是M与y轴的另一个交点,过劣弧上的点F作FHAD于点H,且FH=1.5(1)求点D的坐标及该抛物线的表达式;(2)若点P是x轴上的一个动点,试求出PEF的周长最小时点P的坐标;(3)在抛物线的对称轴上是否存在点Q,使QCM是等腰三角形?如果存在,请直接写出点Q的坐标;如果不存在,请说明理由例10.已知抛物线y=ax2+bx+1经过点A(1,3)和点B(2,1)。(1)求此抛物线解析式; (2)点C、D分别是x轴和y轴上的动点,求四边形ABCD周长的最小值,并写出C.D两点的坐标;(3)在抛物线AB段上存在一点E,使ABE的面积最大,求E点的坐标;请直接写出以A.B和E为顶点的平行四
8、边形的第四个顶点P的坐标。例11.如图1,抛物线y=ax2+bx+c(a0)的顶点为C(l,4),交x轴于A、B两点,交y轴于点D,其中点B的坐标为(3,0)(1)求抛物线的解析式;(2)如图2,过点A的直线与抛物线交于点 E,交y轴于点F,其中点E的横坐标为2,若直线PQ为抛物线的对称轴,点G为直线 PQ上的一动点,则x轴上是否存在一点H,使D、G,H、F四点所围成的四边形周长最小?若存在,求出这个最小值及点G、H的坐标;若不存在,请说明理由;(3)如图3,在抛物线上是否存在一点T,过点T作x轴的垂线,垂足为点M,过点M作MNBD,交线段AD于点N,连接MD,使DNMBMD?若存在,求出点T
9、的坐标;若不存在,请说明理由例12.已知抛物线y=-x2+bx+c与x轴交于点A(m2,0)和B(2m1,0)(点A在点B的左侧),与y轴相交于点C,顶点为P,对称轴为l:x1(1)求抛物线解析式(2)直线ykx2(k0)与抛物线相交于两点M(x1,y1),N(x2,y2)(x1x2),当|x1-x2|最小时,求抛物线与直线的交点M和N的坐标(3)首尾顺次连接点O,B,P,C构成多边形的周长为L若线段OB在x轴上移动,求L最小值时点O,B移动后的坐标及L的最小值例9.(衢州)如图,已知点A(-4,8)和点B(2,n)在抛物线y=ax2上(1)求a的值及点B关于x轴对称点P的坐标,并在x轴上找一
10、点Q,使得AQ+QB最短,求出点Q的坐标;(2)平移抛物线y=ax2,记平移后点A的对应点为A,点B的对应点为B,点C(-2,0)和点D(-4,0)是x轴上的两个定点当抛物线向左平移到某个位置时,AC+CB最短,求此时抛物线的函数解析式;当抛物线向左或向右平移时,是否存在某个位置,使四边形ABCD的周长最短?若存在,求出此时抛物线的函数解析式;若不存在,请说明理由例13.(重庆)如图1,在平面直角坐标系中,抛物线交轴于A,B两点(点A在点B的左侧),交轴于点W,顶点为C,抛物线的对称轴与轴的交点为D。(1)求直线BC的解析式。(2)点E(m,0),F(m+2,0)为x轴上两点,其中,分别垂直于
11、x轴,交抛物线与点,交BC于点M,N,当的值最大时,在y轴上找一点R,使得值最大,请求出R点的坐标及的最大值。例14.(自贡)如图,抛物线l交x轴于点A(3,0)、B(1,0),交y轴于点C(0,3)将抛物线l沿y轴翻折得抛物线l1(1)求l1的解析式;(2)在l1的对称轴上找出点P,使点P到点A的对称点A1及C两点的距离差最大,并说出理由;例15.如图,已知直线y=1/2x+1与y轴交于点A,与x轴交于点D,抛物线y=1/2x2+bx+c与直线交于A、E两点,与x轴交于B、C两点,且B点坐标为(1,0)(1)求该抛物线的解析式;(2)动点P在x轴上移动,当PAE是直角三角形时,求点P的坐标P
12、;(3)在抛物线的对称轴上找一点M,使|AM-MC|的值最大,求出点M的坐标例16.如图,在平面直角坐标系中,四边形ABCD是直角梯形,BCAD,BAD=90,BC与y轴相交于点M,且M是BC的中点,A、B、D三点的坐标分别是A(),B(),D(3,0)连接DM,并把线段DM沿DA方向平移到ON若抛物线经过点D、M、N(1)求抛物线的解析式(2)抛物线上是否存在点P,使得PA=PC,若存在,求出点P的坐标;若不存在,请说明理由(3)设抛物线与x轴的另一个交点为E,点Q是抛物线的对称轴上的一个动点,当点Q在什么位置时有|QE-QC|最大?并求出最大值检测1.在平面直角坐标系xOy中,抛物线y=x
13、2+bx+c经过A(2,0)、B(4,0)两点,直线yx+2交y轴于点C,且过点D(8,m)(1)求抛物线的解析式;(2)在x轴上找一点P,使CP+DP的值最小,求出点P的坐标;(3)将抛物线y=x2+bx+c左右平移,记平移后点A的对应点为A,点B的对应点为B,当四边形ABDC的周长最小时,求抛物线的解析式及此时四边形ABDC周长的最小值(4)设抛物线的顶点为Q,过点C作x轴的平行线L,点M在直线L上,且MNx轴,垂足为N,若DM+MN+NQ最小,直接写出此时点M,N的坐标。2.如图,在平面直角坐标系xOy中,二次函数y=x2+bx+c的图象与x轴交于A(-1,0)、B(3,0)两点,顶点为C(1)求此二次函数解析式;(2)点D为点C关于x轴的对称点,过点A作直线l:y=x+交BD于点E,过点B作直线BKAD交直线l于K点问:在四边形ABKD的内部是否存在点P,使得它到四边形ABKD四边的距离都相等?若存在,请求出点P的坐标;若不存在,请说明理由;(3)在(2)的条件下,若M、N分别为直线AD和直线l上的两个动点,连结DN、NM、MK,求DN+NM+MK和的最小值(4)设抛物线交y轴于点R,若点K在抛物线对称轴上,当KB-KR的值最大时,直接写出此时K的坐标。专心-专注-专业
限制150内